全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2008 

Incidence and Clinical Characteristics of Group A Rotavirus Infections among Children Admitted to Hospital in Kilifi, Kenya

DOI: 10.1371/journal.pmed.0050153

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Rotavirus, predominantly of group A, is a major cause of severe diarrhoea worldwide, with the greatest burden falling on young children living in less-developed countries. Vaccines directed against this virus have shown promise in recent trials, and are undergoing effectiveness evaluation in sub-Saharan Africa. In this region limited childhood data are available on the incidence and clinical characteristics of severe group A rotavirus disease. Advocacy for vaccine intervention and interpretation of effectiveness following implementation will benefit from accurate base-line estimates of the incidence and severity of rotavirus paediatric admissions in relevant populations. The study objective was to accurately define the incidence and severity of group A rotavirus disease in a resource-poor setting necessary to make informed decisions on the need for vaccine prevention. Methods and Findings Between 2002 and 2004 we conducted prospective surveillance for group A rotavirus infection at Kilifi District Hospital in coastal Kenya. Children < 13 y of age were eligible as “cases” if admitted with diarrhoea, and “controls” if admitted without diarrhoea. We calculated the incidence of hospital admission with group A rotavirus using data from a demographic surveillance study of 220,000 people in Kilifi District. Of 15,347 childhood admissions 3,296 (22%) had diarrhoea, 2,039 were tested for group A rotavirus antigen and, of these, 588 (29%) were positive. 372 (63%) rotavirus-positive cases were infants. Of 620 controls 19 (3.1%, 95% confidence interval [CI] 1.9–4.7) were rotavirus positive. The annual incidence (per 100,000 children) of rotavirus-positive admissions was 1,431 (95% CI 1,275–1,600) in infants and 478 (437–521) in under-5-y-olds, and highest proximal to the hospital. Compared to children with rotavirus-negative diarrhoea, rotavirus-positive cases were less likely to have coexisting illnesses and more likely to have acidosis (46% versus 17%) and severe electrolyte imbalance except hyponatraemia. In-hospital case fatality was 2% among rotavirus-positive and 9% among rotavirus-negative children. Conclusions In Kilifi > 2% of children are admitted to hospital with group A rotavirus diarrhoea in the first 5 y of life. This translates into over 28,000 vaccine-preventable hospitalisations per year across Kenya, and is likely to be a considerable underestimate. Group A rotavirus diarrhoea is associated with acute life-threatening metabolic derangement in otherwise healthy children. Although mortality is low in this clinical research setting this

References

[1]  Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI (2003) Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis 9: 565–572.
[2]  Kapikian AZ, Hoshino Y, Chanock RM (2001) Rotaviruses. In: Knipe DM, Howley PM, editors. Fields Virology. 4th ed.. Philadelphia: Lippincott, Williams & Wilkins. pp. 1787–1833.
[3]  Parashar UD, Gibson CJ, Bresse JS, Glass RI (2006) Rotavirus and severe childhood diarrhea. Emerg Infect Dis 12: 304–306.
[4]  Vesikari T, Matson DO, Dennehy P, Van Damme P, Santosham M, et al. (2006) Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N Engl J Med 354: 23–33.
[5]  Ruiz-Palacios GM, Perez-Schael I, Velazquez FR, Abate H, Breuer T, et al. (2006) Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med 354: 11–22.
[6]  Boslego JW (2006) Phase III clinical trials of rotavirus vaccines and efforts to accelerate introduction to the developing world. Available: http://www3.niaid.nih.gov/news/events/me?etings/Viral+Infections/Boslego.pdf. Accessed 17 June 2008.
[7]  World Health Organisation (2007) Rotavirus vaccines. Wkly Epidemiol Rec 82: 285–295.
[8]  Cunliffe NA, Kilgore PE, Bresee JS, Steele AD, Luo N, et al. (1998) Epidemiology of rotavirus diarrhoea in Africa: a review to assess the need for rotavirus immunization. Bull World Health Organ 76: 525–537.
[9]  Mutanda LN (1980) Epidemiology of acute gastroenteritis in early childhood in Kenya: aetiological agents. Trop Geogr Med 32: 138–144.
[10]  Nakata S, Gatheru Z, Ukae S, Adachi N, Kobayashi N, et al. (1999) Epidemiological study of the G serotype distribution of group A rotaviruses in Kenya from 1991 to 1994. J Med Virol 58: 296–303.
[11]  Saidi SM, Iijima Y, Sang WK, Mwangudza AK, Oundo JO, et al. (1997) Epidemiological study on infectious diarrheal diseases in children in a coastal rural area of Kenya. Microbiol Immunol 41: 773–778.
[12]  Steele AD, Ivanoff B (2003) Rotavirus strains circulating in Africa during 1996–1999: emergence of G9 strains and P[6] strains. Vaccine 21: 361–367.
[13]  [No authors listed] (2007) Rotavirus vaccine news. Rotavirus Vaccine Program 2: 1–2. Available: http://www.rotavirusvaccine.org/files/RV?_Surveillance_News_Nov2007.pdf. Accessed 17 June 2008.
[14]  Berkley JA, Lowe BS, Mwangi I, Williams T, Bauni E, et al. (2005) Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med 352: 39–47.
[15]  Berkley JA, Ross A, Mwangi I, Osier FH, Mohammed M, et al. (2003) Prognostic indicators of early and late death in children admitted to district hospital in Kenya: cohort study. BMJ 326: 361.
[16]  English M, Berkley J, Mwangi I, Mohammed S, Ahmed M, et al. (2003) Hypothetical performance of syndrome-based management of acute paediatric admissions of children aged more than 60 days in a Kenyan district hospital. Bull World Health Organ 81: 166–173.
[17]  English M, Ngama M, Musumba C, Wamola B, Bwika J, et al. (2003) Causes and outcome of young infant admissions to a Kenyan district hospital. Arch Dis Child 88: 438–443.
[18]  Cowgill KD, Ndiritu M, Nyiro J, Slack MP, Chiphatsi S, et al. (2006) Effectiveness of Haemophilus influenzae type b Conjugate vaccine introduction into routine childhood immunization in Kenya. JAMA 296: 671–678.
[19]  Steele AD, Alexander JJ (1987) Molecular epidemiology of rotavirus in black infants in South Africa. J Clin Microbiol 25: 2384–2387.
[20]  Berkley J, Mwangi I, Griffiths K, Ahmed I, Mithwani S, et al. (2005) Assessment of severe malnutrition among hospitalized children in rural Kenya: comparison of weight for height and mid upper arm circumference. JAMA 294: 591–597.
[21]  Otieno H, Were E, Ahmed I, Charo E, Brent A, et al. (2004) Are bedside features of shock reproducible between different observers. Arch Dis Child 89: 977–979.
[22]  World Health Organisation (2000) Management of the child with a serious infection or severe malnutrition: Guidelines for care at the first-referral level in developing countries. Geneva: WHO. 162 p. WHO/FCH/CAH/00.1.
[23]  Maitland K, Levin M, English M, Mithwani S, Peshu N, et al. (2003) Severe P. falciparum malaria in Kenyan children: evidence for hypovolaemia. QJM 96: 427–434.
[24]  Pamba A, Maitland K (2004) Capillary refill: prognostic value in Kenyan children. Arch Dis Child 89: 950–955.
[25]  US Census Bureau (2006) IDB Summary Demographic Data for Kenya, 2005. Population Division/International Programs Center. Available: http://www.census.gov/ipc/www/idb/countr?y/keportal.html. Accessed 20 October 2006.
[26]  Ministry of Planning and National Development (2003) Kenya demographic and health survey. Nairobi: Central Bureau of Statistics, Government of Kenya.
[27]  Kapikian AZ, Wyatt RG (1992) Viral gastrointestinal infections. In: Feigin RD, Cherry JD, editors. Textbook of Pediatric Infectious Diseases. 3rd Edition.. Philadelphia: WB Saunders. pp. 655–676.
[28]  Cunliffe NA, Rogerson S, Dove W, Thindwa BD, Greensill J, et al. (2002) Detection and characterization of rotaviruses in hospitalized neonates in Blantyre, Malawi. J Clin Microbiol 40: 1534–1537.
[29]  Pager CT, Alexander JJ, Steele AD (2000) South African G4P[6] asymptomatic and symptomatic neonatal rotavirus strains differ in their NSP4, VP8*, and VP7 genes. J Med Virol 62: 208–216.
[30]  Cunliffe NA, Gondwe JS, Kirkwood CD, Graham SM, Nhlane NM, et al. (2001) Effect of concomitant HIV infection on presentation and outcome of rotavirus gastroenteritis in Malawian children. Lancet 358: 550–555.
[31]  Richardson S, Grimwood K, Gorrell R, Palombo E, Barnes G, et al. (1998) Extended excretion of rotavirus after severe diarrhoea in young children. Lancet 351: 1844–1848.
[32]  Rodriguez WJ, Kim HW, Arrobio JO, Brandt CD, Chanock RM, et al. (1977) Clinical features of acute gastroenteritis associated with human reovirus-like agent in infants and young children. J Pediatr 91: 188–193.
[33]  Cunliffe NA, Nakagomi O (2005) A critical time for rotavirus vaccines: a review. Expert Rev Vaccines 4: 521–532.
[34]  Ndiritu M, Cowgill KD, Ismail A, Chiphatsi S, Kamau T, et al. (2006) Immunization coverage and risk factors for failure to immunize within the Expanded Programme on Immunization in Kenya after introduction of new Haemophilus influenzae type b and hepatitis b virus antigens. BMC Public Health 6: 132.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133