全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2008 

Neonatal Thyroid Function in Seveso 25 Years after Maternal Exposure to Dioxin

DOI: 10.1371/journal.pmed.0050161

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Neonatal hypothyroidism has been associated in animal models with maternal exposure to several environmental contaminants; however, evidence for such an association in humans is inconsistent. We evaluated whether maternal exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent and widespread toxic environmental contaminant, is associated with modified neonatal thyroid function in a large, highly exposed population in Seveso, Italy. Methods and Findings Between 1994 and 2005, in individuals exposed to TCDD after the 1976 Seveso accident we conducted: (i) a residence-based population study on 1,014 children born to the 1,772 women of reproductive age in the most contaminated zones (A, very high contamination; B, high contamination), and 1,772 age-matched women from the surrounding noncontaminated area (reference); (ii) a biomarker study on 51 mother–child pairs for whom recent maternal plasma dioxin measurements were available. Neonatal blood thyroid-stimulating hormone (b-TSH) was measured on all children. We performed crude and multivariate analyses adjusting for gender, birth weight, birth order, maternal age, hospital, and type of delivery. Mean neonatal b-TSH was 0.98 μU/ml (95% confidence interval [CI] 0.90–1.08) in the reference area (n = 533), 1.35 μU/ml (95% CI 1.22–1.49) in zone B (n = 425), and 1.66 μU/ml (95% CI 1.19–2.31) in zone A (n = 56) (p < 0.001). The proportion of children with b-TSH > 5 μU/ml was 2.8% in the reference area, 4.9% in zone B, and 16.1% in zone A (p < 0.001). Neonatal b-TSH was correlated with current maternal plasma TCDD (n = 51, β = 0.47, p < 0.001) and plasma toxic equivalents of coplanar dioxin-like compounds (n = 51, β = 0.45, p = 0.005). Conclusions Our data indicate that environmental contaminants such as dioxins have a long-lasting capability to modify neonatal thyroid function after the initial exposure.

References

[1]  World Health Organization (1994) Indicators for assessing iodine deficiency disorders and their control through salt iodization. Geneva: World Health Organization. WHO/NUT/94.6 WHO/NUT/94.6.
[2]  Giacomini SM, Hou L, Bertazzi PA, Baccarelli A (2006) Dioxin effects on neonatal and infant thyroid function: routes of perinatal exposure, mechanisms of action and evidence from epidemiology studies. Int Arch Occup Environ Health 79: 396–404.
[3]  Porterfield SP (2000) Thyroidal dysfunction and environmental chemicals–potential impact on brain development. Environ Health Perspect 108(Suppl 3): 433–438.
[4]  U.S. National Research Council (2005) Health implications of perchlorate ingestion. Washington (D.C.): The National Academies Press.
[5]  Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43: 309–334.
[6]  Schecter A, Birnbaum L, Ryan JJ, Constable JD (2006) Dioxins: an overview. Environ Res 101: 419–428.
[7]  Capen CC (1994) Mechanisms of chemical injury of thyroid gland. Prog Clin Biol Res 387: 173–191.
[8]  Birnbaum LS, Tuomisto J (2000) Noncarcinogenic effects of TCDD in animals. Food Addit Contam 17: 275–288.
[9]  Kakeyama M, Tohyama C (2003) Developmental neurotoxicity of dioxin and its related compounds. Ind Health 41: 215–230.
[10]  ten Tusscher GW, Koppe JG (2004) Perinatal dioxin exposure and later effects–a review. Chemosphere 54: 1329–1336.
[11]  Nishimura N, Yonemoto J, Miyabara Y, Fujii-Kuriyama Y, Tohyama C (2005) Altered thyroxin and retinoid metabolic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin in aryl hydrocarbon receptor-null mice. Arch Toxicol 79: 260–267.
[12]  McKinney JD, Chae K, Oatley SJ, Blake CC (1985) Molecular interactions of toxic chlorinated dibenzo-p-dioxins and dibenzofurans with thyroxine binding prealbumin. J Med Chem 28: 375–381.
[13]  Baccarelli A, Pesatori AC, Bertazzi PA (2000) Occupational and environmental agents as endocrine disruptors: experimental and human evidence. J Endocrinol Invest 23: 771–781.
[14]  Bertazzi PA, Di Domenico A (2003) Health consequences of the Seveso, Italy, accident. In: Schecter A, Gasiewicz TA, editors. Dioxins and health. New York: Wiley-Interscience. pp. 827–853. 2nd edition.
[15]  Michalek JE, Pirkle JL, Needham LL, Patterson DG Jr., Caudill SP, et al. (2002) Pharmacokinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Seveso adults and veterans of operation Ranch Hand. J Expo Anal Environ Epidemiol 12: 44–53.
[16]  Baccarelli A, Pfeiffer R, Consonni D, Pesatori AC, Bonzini M, et al. (2005) Handling of dioxin measurement data in the presence of nondetectable values: overview of available methods and their application in the Seveso chloracne study. Chemosphere 60: 898–906.
[17]  Landi MT, Consonni D, Patterson DG Jr., Needham LL, Lucier G, et al. (1998) 2,3,7,8-Tetrachlorodibenzo-p-dioxin plasma levels in Seveso 20 years after the accident. Environ Health Perspect 106: 273–277.
[18]  Landi MT, Needham LL, Lucier G, Mocarelli P, Bertazzi PA, et al. (1997) Concentrations of dioxin 20 years after Seveso. Lancet 349: 1811.
[19]  di Domenico A, Silano V, Viviano G, Zapponi G (1980) Accidental release of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at Seveso, Italy. VI. TCDD levels in atmospheric particles. Ecotoxicol Environ Saf 4: 346–356.
[20]  Bertazzi PA, Consonni D, Bachetti S, Rubagotti M, Baccarelli A, et al. (2001) Health effects of dioxin exposure: a 20-year mortality study. Am J Epidemiol 153: 1031–1044.
[21]  Needham LL, Gerthoux PM, Patterson DG Jr., Brambilla P, Turner WE, et al. (1997) Serum dioxin levels in Seveso, Italy, population in 1976. Teratog Carcinog Mutagen 17: 225–240.
[22]  Baccarelli A, Pesatori AC, Consonni D, Mocarelli P, Patterson DG Jr., et al. (2005) Health status and plasma dioxin levels in chloracne cases 20 years after the Seveso, Italy accident. Br J Dermatol 152: 459–465.
[23]  Patterson DG, Hampton L, Lapeza CR Jr., Belser WT, Green V, et al. (1987) High-resolution gas chromatographic/high-resolution mass spectrometric analysis of human serum on a whole-weight and lipid basis for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Anal Chem 59: 2000–2005.
[24]  Michalek JE, Pirkle JL, Caudill SP, Tripathi RC, Patterson DG Jr., et al. (1996) Pharmacokinetics of TCDD in veterans of Operation Ranch Hand: 10-year follow-up. J Toxicol Environ Health 47: 209–220.
[25]  Michalek JE, Tripathi RC (1999) Pharmacokinetics of TCDD in veterans of Operation Ranch Hand: 15-year follow-up. J Toxicol Environ Health A 57: 369–378.
[26]  Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, et al. (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93: 223–241.
[27]  Rashmi , Seth A, Sekhri T, Agarwal A (2007) Effect of perinatal factors on cord blood thyroid stimulating hormone levels. J Pediatr Endocrinol Metab 20: 59–64.
[28]  Belsley DA, Kuh E, Welsch RE (1980) Regression diagnostics: identifying influential data and sources of collinearity. New York: John Wiley.
[29]  Delange F (2002) Iodine deficiency in Europe and its consequences: an update. Eur J Nucl Med Mol Imaging 29(Suppl 2): S404–S416.
[30]  Carta Sorcini M, Diodato A, Fazzini C, Sabini G, Carta S, et al. (1988) Influence of environmental iodine deficiency on neonatal thyroid screening results. J Endocrinol Invest 11: 309–312.
[31]  Aghini Lombardi FA, Pinchera A, Antonangeli L, Rago T, Chiovato L, et al. (1995) Mild iodine deficiency during fetal/neonatal life and neuropsychological impairment in Tuscany. J Endocrinol Invest 18: 57–62.
[32]  Chen YC, Yu ML, Rogan WJ, Gladen BC, Hsu CC (1994) A 6-year follow-up of behavior and activity disorders in the Taiwan Yu-cheng children. Am J Public Health 84: 415–421.
[33]  Jacobson JL, Jacobson SW (1996) Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med 335: 783–789.
[34]  Jacobson JL, Jacobson SW (1997) Evidence for PCBs as neurodevelopmental toxicants in humans. Neurotoxicology 18: 415–424.
[35]  Vreugdenhil HJ, Lanting CI, Mulder PG, Boersma ER, Weisglas-Kuperus N (2002) Effects of prenatal PCB and dioxin background exposure on cognitive and motor abilities in Dutch children at school age. J Pediatr 140: 48–56.
[36]  Koopman-Esseboom C, Weisglas-Kuperus N, de Ridder MA, Van der Paauw CG, Tuinstra LG, et al. (1996) Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infants' mental and psychomotor development. Pediatrics 97: 700–706.
[37]  Koopman-Esseboom C, Morse DC, Weisglas-Kuperus N, Lutkeschipholt IJ, Van der Paauw CG, et al. (1994) Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants. Pediatr Res 36: 468–473.
[38]  Pluim HJ, de Vijlder JJ, Olie K, Kok JH, Vulsma T, et al. (1993) Effects of pre- and postnatal exposure to chlorinated dioxins and furans on human neonatal thyroid hormone concentrations. Environ Health Perspect 101: 504–508.
[39]  Nagayama J, Okamura K, Iida T, Hirakawa H, Matsueda T, et al. (1998) Postnatal exposure to chlorinated dioxins and related chemicals on thyroid hormone status in Japanese breast-fed infants. Chemosphere 37: 1789–1793.
[40]  Matsuura N, Uchiyama T, Tada H, Nakamura Y, Kondo N, et al. (2001) Effects of dioxins and polychlorinated biphenyls (PCBs) on thyroid function in infants born in Japan–the second report from research on environmental health. Chemosphere 45: 1167–1171.
[41]  Nagayama J, Tsuji H, Lida T, Nakagawa R, Matsueda T, et al. (2004) Effect of lactational exposure to organochlorine pesticides, PCBs and dioxins on immune response and thyroid hormone systems in Japanese male and female infants. Organohalogen Compounds 66: 3217–3223.
[42]  Wilhelm M, Wittsiepe J, Lemm F, Ranft U, Kramer U, et al. (2007) The Duisburg birth cohort study: influence of the prenatal exposure to PCDD/Fs and dioxin-like PCBs on thyroid hormone status in newborns and neurodevelopment of infants until the age of 24 months. Mutat Res. In press.
[43]  Wang SL, Su PH, Jong SB, Guo YL, Chou WL, et al. (2005) In utero exposure to dioxins and polychlorinated biphenyls and its relations to thyroid function and growth hormone in newborns. Environ Health Perspect 113: 1645–1650.
[44]  Maervoet J, Vermeir G, Covaci A, Van Larebeke N, Koppen G, et al. (2007) Association of thyroid hormone concentrations with levels of organochlorine compounds in cord blood of neonates. Environ Health Perspect 115: 1780–1786.
[45]  Longnecker MP, Gladen BC, Patterson DG Jr., Rogan WJ (2000) Polychlorinated biphenyl (PCB) exposure in relation to thyroid hormone levels in neonates. Epidemiology 11: 249–254.
[46]  Sandau CD, Ayotte P, Dewailly E, Duffe J, Norstrom RJ (2002) Pentachlorophenol and hydroxylated polychlorinated biphenyl metabolites in umbilical cord plasma of neonates from coastal populations in Quebec. Environ Health Perspect 110: 411–417.
[47]  Alvarez-Pedrerol M, Ribas-Fito N, Torrent M, Carrizo D, Garcia-Esteban R, et al. (2008) Thyroid disruption at birth due to prenatal exposure to beta-hexachlorocyclohexane. Environ Int. In press.
[48]  Chevrier J, Eskenazi B, Bradman A, Fenster L, Barr DB (2007) Associations between prenatal exposure to polychlorinated biphenyls and neonatal thyroid-stimulating hormone levels in a Mexican-American population, Salinas Valley, California. Environ Health Perspect 115: 1490–1496.
[49]  Otake T, Yoshinaga J, Enomoto T, Matsuda M, Wakimoto T, et al. (2007) Thyroid hormone status of newborns in relation to in utero exposure to PCBs and hydroxylated PCB metabolites. Environ Res 105: 240–246.
[50]  Yu Z, Palkovicova L, Drobna B, Petrik J, Kocan A, et al. (2007) Comparison of organochlorine compound concentrations in colostrum and mature milk. Chemosphere 66: 1012–1018.
[51]  Pesatori AC (1995) Dioxin contamination in Seveso: the social tragedy and the scientific challenge. Med Lav 86: 111–124.
[52]  Bertazzi PA, Zocchetti C, Pesatori AC, Guercilena S, Sanarico M, et al. (1989) Mortality in an area contaminated by TCDD following an industrial incident. Med Lav 80: 316–329.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133