Background Serum uric acid levels in humans are influenced by diet, cellular breakdown, and renal elimination, and correlate with blood pressure, metabolic syndrome, diabetes, gout, and cardiovascular disease. Recent genome-wide association scans have found common genetic variants of SLC2A9 to be associated with increased serum urate level and gout. The SLC2A9 gene encodes a facilitative glucose transporter, and it has two splice variants that are highly expressed in the proximal nephron, a key site for urate handling in the kidney. We investigated whether SLC2A9 is a functional urate transporter that contributes to the longstanding association between urate and blood pressure in man. Methods and Findings We expressed both SLC2A9 splice variants in Xenopus laevis oocytes and found both isoforms mediate rapid urate fluxes at concentration ranges similar to physiological serum levels (200–500 μM). Because SLC2A9 is a known facilitative glucose transporter, we also tested whether glucose or fructose influenced urate transport. We found that urate is transported by SLC2A9 at rates 45- to 60-fold faster than glucose, and demonstrated that SLC2A9-mediated urate transport is facilitated by glucose and, to a lesser extent, fructose. In addition, transport is inhibited by the uricosuric benzbromarone in a dose-dependent manner (Ki = 27 μM). Furthermore, we found urate uptake was at least 2-fold greater in human embryonic kidney (HEK) cells overexpressing SLC2A9 splice variants than nontransfected kidney cells. To confirm that our findings were due to SLC2A9, and not another urate transporter, we showed that urate transport was diminished by SLC2A9-targeted siRNA in a second mammalian cell line. In a cohort of men we showed that genetic variants of SLC2A9 are associated with reduced urinary urate clearance, which fits with common variation at SLC2A9 leading to increased serum urate. We found no evidence of association with hypertension (odds ratio 0.98, 95% confidence interval [CI] 0.9 to 1.05, p > 0.33) by meta-analysis of an SLC2A9 variant in six case–control studies including 11,897 participants. In a separate meta-analysis of four population studies including 11,629 participants we found no association of SLC2A9 with systolic (effect size ?0.12 mm Hg, 95% CI ?0.68 to 0.43, p = 0.664) or diastolic blood pressure (effect size ?0.03 mm Hg, 95% CI ?0.39 to 0.31, p = 0.82). Conclusions This study provides evidence that SLC2A9 splice variants act as high-capacity urate transporters and is one of the first functional characterisations of findings from genome-wide
References
[1]
Cannon PJ, Stason WB, Demartini FE, Sommers SC, Laragh JH (1966) Hyperuricemia in primary and renal hypertension. N Engl J Med 275: 457–464.
[2]
Sundstrom J, Sullivan L, D'Agostino RB, Levy D, Kannel WB, et al. (2005) Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension 45: 28–33.
[3]
Nakanishi N, Okamoto M, Yoshida H, Matsuo Y, Suzuki K, et al. (2003) Serum uric acid and risk for development of hypertension and impaired fasting glucose or Type II diabetes in Japanese male office workers. Eur J Epidemiol 18: 523–530.
[4]
Fang J, Alderman MH (2000) Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971–1992. National Health and Nutrition Examination Survey. JAMA 283: 2404–2410.
[5]
Anzai N, Kanai Y, Endou H (2007) New insights into renal transport of urate. Curr Opin Rheumatol 19: 151–157.
[6]
Li S, Sanna S, Maschio A, Busonero F, Usala G, et al. (2007) The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet 3: e194. doi:10.1371/journal.pgen.0030194.
[7]
Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, et al. (2008) Genome-wide association study identifies novel genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Human Genetics 82: 1–11.
[8]
Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, et al. (2004) Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J Biol Chem 279: 16229–16236.
[9]
Yao SYM, Cass CE, Young JD (2000) The Xenopus oocyte expression system for the cDNA cloning and characterization of plasma membrane transport proteins. In: Baldwin SA, editor. Membrane transport: A practical approach. London: Oxford University Press. pp. 47–76.
[10]
Ferber H, Vergin H, Hitzenberger G (1981) Pharmacokinetics and biotransformation of benzbromarone in man. Eur J Clin Pharmacol 19: 431–435.
[11]
Keembiyehetty C, Augustin R, Carayannopoulos MO, Steer S, Manolescu A, et al. (2006) Mouse glucose transporter 9 splice variants are expressed in adult liver and kidney and are up-regulated in diabetes. Mol Endocrinol 20: 686–697.
[12]
Cappuccio FP, Strazzullo P, Farinaro E, Trevisan M (1993) Uric acid metabolism and tubular sodium handling. Results from a population-based study. JAMA 270: 354–359.
[13]
Galletti F, Barbato A, Versiero M, Iacone R, Russo O, et al. (2007) Circulating leptin levels predict the development of metabolic syndrome in middle-aged men: an 8-year follow-up study. J Hypertens 25: 1671–1677.
[14]
Strazzullo P, Barbato A, Galletti F, Barba G, Siani A, et al. (2006) Abnormalities of renal sodium handling in the metabolic syndrome. Results of the Olivetti Heart Study. J Hypertens 24: 1633–1639.
[15]
Caulfield M, Munroe P, Pembroke J, Samani N, Dominiczak A, et al. (2003) Genome-wide mapping of human loci for essential hypertension. Lancet 361: 2118–2123.
[16]
Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal 14: 143–149.
Consortium TIH (2003) The International HapMap Project. Nature 426: 789–796.
[19]
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575.
[20]
Tobin MD, Sheehan NA, Scurrah KJ, Burton PR (2005) Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat Med 24: 2911–2935.
Kim ST, Moley KH (2007) The expression of GLUT8, GLUT9a, and GLUT9b in the mouse testis and sperm. Reprod Sci 14: 445–455.
[23]
Mobasheri A, Dobson H, Mason SL, Cullingham F, Shakibaei M, et al. (2005) Expression of the GLUT1 and GLUT9 facilitative glucose transporters in embryonic chondroblasts and mature chondrocytes in ovine articular cartilage. Cell Biol Int 29: 249–260.
[24]
Carayannopoulos MO, Schlein A, Wyman A, Chi M, Keembiyehetty C, et al. (2004) GLUT9 is differentially expressed and targeted in the preimplantation embryo. Endocrinology 145: 1435–1443.
[25]
Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, et al. (2008) SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 40: 437–442.
[26]
Doring A, Gieger C, Mehta D, Gohlke H, Prokisch H, et al. (2008) SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 40: 430–436.
[27]
Stark K, Reinhard W, Neureuther K, Wiedmann S, Sedlacek K, et al. (2008) Association of common polymorphisms in GLUT9 gene with gout but not with coronary artery disease in a large case-control study. PLoS ONE 3: e1948. doi:10.1371/journal.pone.0001948.
[28]
Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, et al. (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417: 447–452.
[29]
Hediger MA (2004) [Physiology and biochemistry of uric acid]. Ther Umsch 61: 541–545.
[30]
Van Aubel RA, Smeets PH, van den Heuvel JJ, Russel FG (2005) Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol 288: F327–333.
[31]
Abramson RG (2004) Galectin 9 is the sugar-regulated urate transporter/channel UAT. Glycoconj J 19: 491–498.
[32]
Bakhiya A, Bahn A, Burckhardt G, Wolff N (2003) Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell Physiol Biochem 13: 249–256.
[33]
Ichida K, Hosoyamada M, Kimura H, Takeda M, Utsunomiya Y, et al. (2003) Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int 63: 143–155.
[34]
Manolescu AR, Augustin R, Moley K, Cheeseman C (2007) A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity. Mol Membr Biol 24: 455–463.
[35]
Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301: 616–620.
[36]
Dominguez JH, Camp K, Maianu L, Garvey WT (1992) Glucose transporters of rat proximal tubule: differential expression and subcellular distribution. Am J Physiol 262: F807–812.
[37]
Thorens B, Lodish HF, Brown D (1990) Differential localization of two glucose transporter isoforms in rat kidney. Am J Physiol 259: C286–294.
[38]
Sugawara-Yokoo M, Suzuki T, Matsuzaki T, Naruse T, Takata K (1999) Presence of fructose transporter GLUT5 in the S3 proximal tubules in the rat kidney. Kidney Int 56: 1022–1028.
[39]
Kanai Y, Lee WS, You G, Brown D, Hediger MA (1994) The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest 93: 397–404.
[40]
Wright EM (2001) Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol. 280. F10-.
[41]
Ekberg K, Landau BR, Wajngot A, Chandramouli V, Efendic S, et al. (1999) Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 48: 292–298.
[42]
Mithieux G, Gautier-Stein A, Rajas F, Zitoun C (2006) Contribution of intestine and kidney to glucose fluxes in different nutritional states in rat. Comp Biochem Physiol B Biochem Mol Biol 143: 195–200.
[43]
Conjard A, Martin M, Guitton J, Baverel G, Ferrier B (2001) Gluconeogenesis from glutamine and lactate in the isolated human renal proximal tubule: longitudinal heterogeneity and lack of response to adrenaline. Biochem J 360: 371–377.
[44]
Baker JF, Krishnan E, Chen L, Schumacher HR (2005) Serum uric acid and cardiovascular disease: recent developments, and where do they leave us. Am J Med 118: 816–826.
[45]
Chien KL, Chen MF, Hsu HC, Chang WT, Su TC, et al. (2007) Plasma uric acid and the risk of type 2 diabetes in a Chinese community. Clin Chem 54: 310–316.
[46]
Krishnan E, Kwoh CK, Schumacher HR, Kuller L (2007) Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension 49: 298–303.
[47]
Choi JW, Ford ES, Gao X, Choi HK (2008) Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: The third national health and nutrition examination survey. Arthritis Rheum 59: 109–116.
[48]
Jossa F, Farinaro E, Panico S, Krogh V, Celentano E, et al. (1994) Serum uric acid and hypertension: the Olivetti heart study. J Hum Hypertens 8: 677–681.