全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2008 

A Mechanism for the Inhibition of Neural Progenitor Cell Proliferation by Cocaine

DOI: 10.1371/journal.pmed.0050117

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Prenatal exposure of the developing brain to cocaine causes morphological and behavioral abnormalities. Recent studies indicate that cocaine-induced proliferation inhibition and/or apoptosis in neural progenitor cells may play a pivotal role in causing these abnormalities. To understand the molecular mechanism through which cocaine inhibits cell proliferation in neural progenitors, we sought to identify the molecules that are responsible for mediating the effect of cocaine on cell cycle regulation. Methods and Findings Microarray analysis followed by quantitative real-time reverse transcription PCR was used to screen cocaine-responsive and cell cycle-related genes in a neural progenitor cell line where cocaine exposure caused a robust anti-proliferative effect by interfering with the G1-to-S transition. Cyclin A2, among genes related to the G1-to-S cell cycle transition, was most strongly down-regulated by cocaine. Down-regulation of cyclin A was also found in cocaine-treated human primary neural and A2B5+ progenitor cells, as well as in rat fetal brains exposed to cocaine in utero. Reversing cyclin A down-regulation by gene transfer counteracted the proliferation inhibition caused by cocaine. Further, we found that cocaine-induced accumulation of reactive oxygen species, which involves N-oxidation of cocaine via cytochrome P450, promotes cyclin A down-regulation by causing an endoplasmic reticulum (ER) stress response, as indicated by increased phosphorylation of eIF2α and expression of ATF4. In the developing rat brain, the P450 inhibitor cimetidine counteracted cocaine-induced inhibition of neural progenitor cell proliferation as well as down-regulation of cyclin A. Conclusions Our results demonstrate that down-regulation of cyclin A underlies cocaine-induced proliferation inhibition in neural progenitors. The down-regulation of cyclin A is initiated by N-oxidative metabolism of cocaine and consequent ER stress. Inhibition of cocaine N-oxidative metabolism by P450 inhibitors may provide a preventive strategy for counteracting the adverse effects of cocaine on fetal brain development.

References

[1]  Substance Abuse and Mental Health Services Administration (1997) National Household Survey on Drug Abuse: Main Findings 1995. Washington (D.C.): US Government Printing Office. Department of Health and Human Services Publication Number SMS: 95–3127.
[2]  Chiriboga CA, Brust JC, Bateman D, Hauser WA (1999) Dose-response effect of fetal cocaine exposure on newborn neurologic function. Pediatrics 103: 79–85.
[3]  Bellini C, Massocco D, Serra G (2000) Prenatal cocaine exposure and the expanding spectrum of brain malformations. Arch Intern Med 160: 2393.
[4]  Lewis BA, Singer LT, Short EJ, Minnes S, Arendt R, et al. (2004) Four-year language outcomes of children exposed to cocaine in utero. Neurotoxicol Teratol 26: 617–627.
[5]  Linares TJ, Singer LT, Kirchner HL, Short EJ, Min MO, et al. (2006) Mental health outcomes of cocaine-exposed children at 6 years of age. J Pediatr Psychol 31: 85–97.
[6]  He N, Bai J, Champoux M, Suomi SJ, Lidow MS (2004) Neurobehavioral deficits in neonatal rhesus monkeys exposed to cocaine in utero. Neurotoxicol Teratol 26: 13–21.
[7]  Lidow MS (1995) Prenatal cocaine exposure adversely affects development of the primate cerebral cortex. Synapse 21: 332–341.
[8]  Lidow MS, Song ZM (2001) Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons. J Comp Neurol 435: 263–275.
[9]  Lidow MS, Bozian D, Song ZM (2001) Cocaine affects cerebral neocortical cytoarchitecture in primates only if administered during neocortical neuronogenesis. Brain Res Dev Brain Res 128: 45–52.
[10]  Poon HF, Abdullah L, Mullan MA, Mullan MJ, Crawford FC (2007) Cocaine-induced oxidative stress precedes cell death in human neuronal progenitor cells. Neurochem Int 50: 69–73.
[11]  Hu S, Cheeran MC, Sheng WS, Ni HT, Lokensgard JR, et al. (2006) Cocaine alters proliferation, migration, and differentiation of human fetal brain-derived neural precursor cells. J Pharmacol Exp Ther 318: 1280–1286.
[12]  Yu RC, Lee TC, Wang TC, Li JH (1999) Genetic toxicity of cocaine. Carcinogenesis 20: 1193–1199.
[13]  Combelles CM, Carabatsos MJ, London SN, Mailhes JB, Albertini DF (2000) Centrosome-specific perturbations during in vitro maturation of mouse oocytes exposed to cocaine. Exp Cell Res 260: 116–126.
[14]  Schenker S, Yang Y, Johnson RF, Downing JW, Schenken RS, et al. (1993) The transfer of cocaine and its metabolites across the term human placenta. Clin Pharmacol Ther 53: 329–339.
[15]  Wiggins RC, Rolsten C, Ruiz B, Davis CM (1989) Pharmacokinetics of cocaine: basic studies of route, dosage, pregnancy and lactation. Neurotoxicology 10: 367–381.
[16]  Van Dyke C, Barash PG, Jatlow P, Byck R (1976) Cocaine: plasma concentrations after intranasal application in man. Science 191: 859–861.
[17]  Stephens BG, Jentzen JM, Karch S, Mash DC, Wetli CV (2004) Criteria for the interpretation of cocaine levels in human biological samples and their relation to the cause of death. Am J Forensic Med Pathol 25: 1–10.
[18]  Kalasinsky KS, Bosy TZ, Schmunk GA, Ang L, Adams V, et al. (2000) Regional distribution of cocaine in postmortem brain of chronic human cocaine users. J Forensic Sci 45: 1041–1048.
[19]  Truckenmiller ME, Vawter MP, Zhang P, Conejero-Goldberg C, Dillon-Carter O, et al. (2002) AF5, a CNS cell line immortalized with an n-terminal fragment of SV40 large T: growth, differentiation, genetic stability and gene expression. Exp Neurol 175: 318–337.
[20]  Sanchez JF, Crooks DR, Lee CT, Schoen CJ, Amable R, et al. (2006) GABAergic lineage differentiation of AF5 neural progenitor cells in vitro. Cell Tissue Res 324: 1–8.
[21]  McNeill-Blue C, Wetmore BA, Sanchez JF, Freed WJ, Merrick BA (2006) Apoptosis mediated by p53 in rat neural AF5 cells following treatment with hydrogen peroxide and staurosporine. Brain Res 1112: 1–15.
[22]  Takahashi T, Nowakowski RS, Caviness VS Jr. (1995) Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J Neurosci 15: 6058–6068.
[23]  Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, et al. (2000) Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci USA 97: 9127–9132.
[24]  Cheadle C, Vawter MP, Freed WJ, Becker KG (2003) Analysis of microarray data using Z score transformation. J Mol Diagn 5: 73–81.
[25]  Lowe RH, Barnes AJ, Lehrmann E, Freed WJ, Kleinman JE, et al. (2006) A validated positive chemical ionization GC/MS method for the identification and quantification of amphetamine, opiates, cocaine, and metabolites in human postmortem brain. J Mass Spectrom 41: 175–184.
[26]  Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, et al. (1992) Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70: 993–1006.
[27]  Zachor D, Cherkes JK, Fay CT, Ocrant I (1994) Cocaine differentially inhibits neuronal differentiation and proliferation in vitro. J Clin Invest 93: 1179–1185.
[28]  Francesco P, Pica F, Favalli C, Tubaro E, Garaci E (1990) Inhibition of rat fibroblast cell proliferation at specific cell cycle stages by cocaine. Cell Biol Int Rep 14: 549–558.
[29]  von Waechter R, Jaensch B (1972) Generation times of the matrix cells during embryonic brain development: an autoradiographic study in rats. Brain Res 46: 235–250.
[30]  Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297: 365–369.
[31]  Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, et al. (1995) Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376: 313–320.
[32]  Desdouets C, Matesic G, Molina CA, Foulkes NS, Sassone-Corsi P, et al. (1995) Cell cycle regulation of cyclin A gene expression by the cyclic AMP-responsive transcription factors CREB and CREM. Mol Cell Biol 15: 3301–3309.
[33]  Chen D, Krasinski K, Sylvester A, Chen J, Nisen PD, et al. (1997) Downregulation of cyclin-dependent kinase 2 activity and cyclin A promoter activity in vascular smooth muscle cells by p27(KIP1), an inhibitor of neointima formation in the rat carotid artery. J Clin Invest 99: 2334–2341.
[34]  Spitkovsky D, Schulze A, Boye B, Jansen-Durr P (1997) Down-regulation of cyclin A gene expression upon genotoxic stress correlates with reduced binding of free E2F to the promoter. Cell Growth Differ 8: 699–710.
[35]  Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, et al. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11: 619–633.
[36]  Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14: 20–28.
[37]  Boelsterli UA Goldlin C (1991) Biomechanisms of cocaine-induced hepatocyte injury mediated by the formation of reactive metabolites. Arch Toxicol 65: 351–360.
[38]  Schenker S, Dicke J, Johnson RF, Mor LL, Henderson GI (1987) Human placental transport of cimetidine. J Clin Invest 80: 1428–1434.
[39]  Howe JP, McGowan WA, Moore J, McCaughey W, Dundee JW (1981) The placental transfer of cimetidine. Anaesthesia 36: 371–375.
[40]  Ching MS, Mihaly GW, Morgan DJ, Date NM, Hardy KJ, et al. (1987) Low clearance of cimetidine across the human placenta. J Pharmacol Exp Ther 241: 1006–1009.
[41]  Nassogne MC, Evrard P, Courtoy PJ (1995) Selective neuronal toxicity of cocaine in embryonic mouse brain cocultures. Proc Natl Acad Sci USA 92: 11029–11033.
[42]  Fattore L, Puddu MC, Picciau S, Cappai A, Fratta W, et al. (2002) Astroglial in vivo response to cocaine in mouse dentate gyrus: a quantitative and qualitative analysis by confocal microscopy. Neuroscience 110: 1–6.
[43]  Shimizu M, Nomura Y, Suzuki H, Ichikawa E, Takeuchi A, et al. (1998) Activation of the rat cyclin A promoter by ATF2 and Jun family members and its suppression by ATF4. Exp Cell Res 239: 93–103.
[44]  Kloss MW, Rosen GM, Rauckman EJ (1984) Biotransformation of norcocaine to norcocaine nitroxide by rat brain microsomes. Psychopharmacology (Berl) 84: 221–224.
[45]  Toennes SW, Thiel M, Walther M, Kauert GF (2003) Studies on metabolic pathways of cocaine and its metabolites using microsome preparations from rat organs. Chem Res Toxicol 16: 375–381.
[46]  Shuster L, Casey E, Welankiwar SS (1983) Metabolism of cocaine and norcocaine to N-hydroxynorcocaine. Biochem Pharmacol 32: 3045–3051.
[47]  Benuck M, Reith ME, Lajtha A (1988) Presence of the toxic metabolite N-hydroxy-norcocaine in brain and liver of the mouse. Biochem Pharmacol 37: 1169–1172.
[48]  Rauckman EJ, Rosen GM, Cavagnaro J (1982) Norcocaine nitroxide. A potential hepatotoxic metabolite of cocaine. Mol Pharmacol 21: 458–463.
[49]  Helt CE, Staversky RJ, Lee YJ, Bambara RA, Keng PC, et al. (2004) The Cdk and PCNA domains on p21Cip1 both function to inhibit G1/S progression during hyperoxia. Am J Physiol Lung Cell Mol Physiol 286: L506–L513.
[50]  Berkeley MB, Daussin S, Hernandez MC, Bayer BM (1994) In vitro effects of cocaine, lidocaine and monoamine uptake inhibitors on lymphocyte proliferative responses. Immunopharmacol Immunotoxicol 16: 165–178.
[51]  Dehay C, Giroud P, Berland M, Smart I, Kennedy H (1993) Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature 366: 464–466.
[52]  Polleux F, Dehay C, Moraillon B, Kennedy H (1997) Regulation of neuroblast cell-cycle kinetics plays a crucial role in the generation of unique features of neocortical areas. J Neurosci 17: 7763–7783.
[53]  Sheen VL, Ganesh VS, Topcu M, Sebire G, Bodell A, et al. (2004) Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nat Genet 36: 69–76.
[54]  Miyama S, Takahashi T, Nowakowski RS, Caviness VS Jr. (1997) A gradient in the duration of the G1 phase in the murine neocortical proliferative epithelium. Cereb Cortex 7: 678–689.
[55]  Dehay C, Savatier P, Cortay V, Kennedy H (2001) Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J Neurosci 21: 201–214.
[56]  Fantel AG, Person RE, Burroughs-Gleim CJ, Mackler B (1990) Direct embryotoxicity of cocaine in rats: effects on mitochondrial activity, cardiac function, and growth and development in vitro. Teratology 42: 35–43.
[57]  Wilkins AS, Marota JJ, Tabit E, Kosofsky BE (1998) Transplacental cocaine exposure. 3: Mechanisms underlying altered brain development. Neurotoxicol Teratol 20: 239–249.
[58]  Anderson-Brown T, Slotkin TA, Seidler FJ (1990) Cocaine acutely inhibits DNA synthesis in developing rat brain regions: Evidence for direct actions. Brain Res 537: 197–202.
[59]  He N, Lidow MS (2004) Cerebral cortical abnormalities seen in a non-human primate model of prenatal cocaine exposure are not related to vasoconstriction. Neurotoxicology 25: 419–432.
[60]  Lidow MS, Rakic P (1995) Neurotransmitter receptors in the proliferative zones of the developing primate occipital lobe. J Comp Neurol 360: 393–402.
[61]  Hoie EB, Swigart SA, Nelson RM, Leuschen MP (1994) Development of secondary sex characteristics in male rats after fetal and perinatal cimetidine exposure. J Pharm Sci 83: 107–109.
[62]  Walker TF, Bott JH, Bond BC (1987) Cimetidine does not demasculinize male rat offspring exposed in utero. Fundam Appl Toxicol 8: 188–197.
[63]  Parker S, Udani M, Gavaler JS, Van Thiel DH (1984) Pre- and neonatal exposure to cimetidine but not ranitidine adversely affects adult sexual functioning of male rats. Neurobehav Toxicol Teratol 6: 313–318.
[64]  Takeshi S, Kai H, Suita S (2002) Effects of the prenatal administration of cimetidine on testicular descent and genital differentiation in rats. Surgery 131(1 Suppl): S301–S305.
[65]  Ruat M, Traiffort E, Arrang JM, Leurs R, Schwartz JC (1991) Cloning and tissue expression of a rat histamine H2-receptor gene. Biochem Biophys Res Commun 179: 1470–1478.
[66]  Honrubia MA, Vilaró MT, Palacios JM, Mengod G (2000) Distribution of the histamine H(2) receptor in monkey brain and its mRNA localization in monkey and human brain. Synapse 38: 343–354.
[67]  Wong CL (1995) Effects of a histamine H2 receptor agonist and antagonist on restraint-induced antinociception in female mice. Eur J Pharmacol 279: 109–113.
[68]  Ndikum-Moffor FM, Schoeb TR, Roberts SM (1998) Liver toxicity from norcocaine nitroxide, an N-oxidative metabolite of cocaine. J Pharmacol Exp Ther 284: 413–419.
[69]  Peterson FJ, Knodell RG, Lindemann NJ, Steele NM (1983) Prevention of acetaminophen and cocaine hepatotoxicity in mice by cimetidine treatment. Gastroenterology 85: 122–129.
[70]  Pacifici R, Fiaschi AI, Micheli L, Centini F, Giorgi G, et al. (2003) Immunosuppression and oxidative stress induced by acute and chronic exposure to cocaine in rat. Int Immunopharmacol 3: 581–592.
[71]  Jeong TC, Jordan SD, Matulka RA, Stanulis ED, Kaminski EJ, et al. (1995) Role of metabolism by esterase and cytochrome P-450 in cocaine-induced suppression of the antibody response. J Pharmacol Exp Ther 272: 407–416.
[72]  Jeong TC, Jordan SD, Matulka RA, Stanulis ED, Park SS, et al. (1996) Immunosuppression induced by acute exposure to cocaine is dependent on metabolism by cytochrome P-450. J Pharmacol Exp Ther 276: 1257–1265.
[73]  Bouis P, Boelsterli UA (1990) Modulation of cocaine metabolism in primary rat hepatocyte cultures: effects on irreversible binding and protein biosynthesis. Toxicol Appl Pharmacol 104: 429–439.
[74]  LeDuc BW, Sinclair PR, Walton HS, Sinclair JF, Greenblatt DJ, et al. (1994) Cocaine toxicity in cultured chicken hepatocytes: role of cytochrome P450. Toxicol Appl Pharmacol 125: 322–332.
[75]  Wang JF, Yang Y, Sullivan MF, Min J, Cai J, et al. (2002) Induction of cardiac cytochrome p450 in cocaine-treated mice. Exp Biol Med 227: 182–188.
[76]  Paxinos G, Ashwell K, Tork I (1994) Atlas of the developing rat nervous system. San Diego: Academic Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133