Background To date no comparative trials have been done, to our knowledge, of fixed-dose artemisinin combination therapies (ACTs) for the treatment of Plasmodium falciparum malaria in pregnancy. Evidence on the safety and efficacy of ACTs in pregnancy is needed as these drugs are being used increasingly throughout the malaria-affected world. The objective of this study was to compare the efficacy, tolerability, and safety of artemether-lumefantrine, the most widely used fixed ACT, with 7 d artesunate monotherapy in the second and third trimesters of pregnancy. Methods and Findings An open-label randomised controlled trial comparing directly observed treatment with artemether-lumefantrine 3 d (AL) or artesunate monotherapy 7 d (AS7) was conducted in Karen women in the border area of northwestern Thailand who had uncomplicated P. falciparum malaria in the second and third trimesters of pregnancy. The primary endpoint was efficacy defined as the P. falciparum PCR-adjusted cure rates assessed at delivery or by day 42 if this occurred later than delivery, as estimated by Kaplan-Meier survival analysis. Infants were assessed at birth and followed until 1 y of life. Blood sampling was performed to characterise the pharmacokinetics of lumefantrine in pregnancy. Both regimens were very well tolerated. The cure rates (95% confidence interval) for the intention to treat (ITT) population were: AS7 89.2% (82.3%–96.1%) and AL 82.0% (74.8%–89.3%), p = 0.054 (ITT); and AS7 89.7% (82.6%–96.8%) and AL 81.2% (73.6%–88.8%), p = 0.031 (per-protocol population). One-third of the PCR-confirmed recrudescent cases occurred after 42 d of follow-up. Birth outcomes and infant (up to age 1 y) outcomes did not differ significantly between the two groups. The pharmacokinetic study indicated that low concentrations of artemether and lumefantrine were the main contributors to the poor efficacy of AL. Conclusion The current standard six-dose artemether-lumefantrine regimen was well tolerated and safe in pregnant Karen women with uncomplicated falciparum malaria, but efficacy was inferior to 7 d artesunate monotherapy and was unsatisfactory for general deployment in this geographic area. Reduced efficacy probably results from low drug concentrations in later pregnancy. A longer or more frequent AL dose regimen may be needed to treat pregnant women effectively and should now be evaluated. Parasitological endpoints in clinical trials of any antimalarial drug treatment in pregnancy should be extended to delivery or day 42 if it comes later. Trial Registration: Current Controlled Trials
References
[1]
Brabin BJ, Verhoeff F (2002) The contribution of malaria. In: Maclean AB, Nielson , editors. Maternal morbidity and mortality. London: Royal College of Obstetricians and Gynaecologists. pp. 65–78.
[2]
Granja AC, Machungo F, Gomes A, Bergstrom S, Brabin B (1998) Malaria-related maternal mortality in urban Mozambique. Ann Trop Med Parasitol 92: 257–263.
[3]
Nosten F, ter Kuile F, Maelankirri L, Decludt B, White NJ (1991) Malaria during pregnancy in an area of unstable endemicity. Trans R Soc Trop Med Hyg 85: 424–429.
[4]
Dolan G, ter Kuile FO, Jacoutot V, White NJ, Luxemburger C, et al. (1993) Bed nets for the prevention of malaria and anaemia in pregnancy. Trans R Soc Trop Med Hyg 87: 620–626.
[5]
McGready R, Simpson JA, Htway M, White NJ, Nosten F, et al. (2001) A double-blind randomized therapeutic trial of insect repellents for the prevention of malaria in pregnancy. Trans R Soc Trop Med Hyg 95: 137–138.
[6]
McGready R, Brockman A, Cho T, Cho D, van Vugt M, et al. (2000) Randomized comparison of mefloquine-artesunate versus quinine in the treatment of multidrug-resistant falciparum malaria in pregnancy. Trans R Soc Trop Med Hyg 94: 689–693.
[7]
McGready R, Ashley EA, Moo E, Cho T, Barends M, et al. (2005) A randomized comparison of artesunate-atovaquone-proguanil versus quinine in treatment for uncomplicated falciparum malaria during pregnancy. J Infect Dis 192: 846–853.
[8]
McGready R, Cho T, Samuel , Villegas L, Brockman A, et al. (2001) Randomized comparison of quinine-clindamycin versus artesunate in the treatment of falciparum malaria in pregnancy. Trans R Soc Trop Med Hyg 95: 651–656.
[9]
WHO (2006) WHO guidelines for the treatment of malaria. Geneva: World Health Organization. WHO/HTM/MAL 2006/1108. Available: http://www.who.int/malaria/treatmentguid?elines.html. Accessed 19 November 2008.
[10]
van Vugt M, Looareesuwan S, Wilairatana P, McGready R, Villegas L, et al. (2000) Artemether-lumefantrine for the treatment of multidrug-resistant falciparum malaria. Trans R Soc Trop Med Hyg 94: 545–548.
[11]
Hutagalung R, Paiphun L, Ashley EA, McGready R, Brockman A, et al. (2005) A randomized trial of artemether-lumefantrine versus mefloquine-artesunate for the treatment of uncomplicated multi-drug resistant on the western border of Thailand. Malar J 4: 46.
[12]
Bakshi R, Hermeling-Fritz I, Gathmann I, Alteri E (2000) An integrated assessment of the clinical safety of artemether-lumefantrine: a new oral fixed-dose combination antimalarial drug. Trans R Soc Trop Med Hyg 94: 419–424.
[13]
Nosten F, McGready R, Mutabingwa T (2007) Case management of malaria in pregnancy. Lancet Infect Dis 7: 118–125.
[14]
Wang TY (1989) Follow-up observation on the therapeutic effects and remote reactions of artemisinin (Qinghaosu) and artemether in treating malaria in pregnant woman. J Tradit Chin Med 9: 28–30.
[15]
Chen LJ, Wang MY, Sun WK, Liu MZ (1984) Embryotoxicity and teratogenicity studies on artemether in mice, rats and rabbits. Zhongguo Yao Li Xue Bao 5: 118–122.
[16]
Clark RL, Arima A, Makori N, Nakata Y, Bernard F, et al. (2008) Artesunate: developmental toxicity and toxicokinetics in monkeys. Birth Defects Res B Dev Reprod Toxicol 83: 418–434.
[17]
Dellicour S, Hall S, Chandramohan D, Greenwood B (2007) The safety of artemisinins during pregnancy: a pressing question. Malar J 6: 15.
[18]
McGready R, Cho T, Keo NK, Thwai KL, Villegas L, et al. (2001) Artemisinin antimalarials in pregnancy: a prospective treatment study of 539 episodes of multidrug-resistant Plasmodium falciparum. Clin Infect Dis 33: 2009–2016.
[19]
WHO (2003) Assessment of the safety of artemisinin compounds in pregnancy. Geneva: World Health Organization. WHO/CDS/MAL/2003.1094/WHO/RBM/TDR/Artemi?sinin/03.1.Available: http://www.who.int/malaria/cmc_upload/0/?000/016/323/artem_pregnancy.html. Accessed 19 November 2008.
[20]
Ward SA, Sevene EJ, Hastings IM, Nosten F, McGready R (2007) Antimalarial drugs and pregnancy: safety, pharmacokinetics, and pharmacovigilance. Lancet Infect Dis 7: 136–144.
[21]
Green MD, van Eijk AM, van Ter Kuile FO, Ayisi JG, Parise ME, et al. (2007) Pharmacokinetics of sulfadoxine-pyrimethamine in HIV-infected and uninfected pregnant women in Western Kenya. J Infect Dis 196: 1403–1408.
[22]
Barnes KI, Little F, Smith PJ, Evans A, Watkins WM, et al. (2006) Sulfadoxine-pyrimethamine pharmacokinetics in malaria: pediatric dosing implications. Clin Pharmacol Ther 80: 582–596.
[23]
McGready R, Stepniewska K, Lindegardh N, Ashley EA, La Y, et al. (2006) The pharmacokinetics of artemether and lumefantrine in pregnant women with uncomplicated falciparum malaria. Eur J Clin Pharmacol 62: 1021–1031.
[24]
Dubowitz LM, Dubowitz V, Goldberg C (1970) Clinical assessment of gestational age in the newborn infant. J Pediatr 77: 1–10.
[25]
McGready R, Simpson J, Panyavudhikrai S, Loo S, Mercuri E, et al. (2000) Neonatal neurological testing in resource-poor settings. Ann Trop Paediatr 20: 323–336.
[26]
Haataja L, McGready R, Arunjerdja R, Simpson JA, Mercuri E, et al. (2002) A new approach for neurological evaluation of infants in resource-poor settings. Ann Trop Paediatr 22: 355–368.
[27]
National Cancer Institute CTEP (2006) The NCI Common Terminology Criteria for Adverse Events v3.0 pp. Available: http://ctep.cancer.gov/forms/CTCAEv3.pdf. Accessed 19 November 2008.
[28]
Brockman A, Paul RE, Anderson TJ, Hackford I, Phaiphun L, et al. (1999) Application of genetic markers to the identification of recrudescent infections on the northwestern border of Thailand. Am J Trop Med Hyg 60: 14–21.
[29]
Annerberg A, Singtoroj T, Tipmanee P, White NJ, Day NP, et al. (2005) High throughput assay for the determination of lumefantrine in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 822: 330–333.
[30]
White NJ, van Vugt M, Ezzet F (1999) Clinical pharmacokinetics and pharmacodynamics and pharmacodynamics of artemether-lumefantrine. Clin Pharmacokinet 37: 105–125.
[31]
van Vugt M, Ezzet F, Phaipun L, Nosten F, White NJ (1998) The relationship between capillary and venous concentrations of the antimalarial drug lumefantrine (benflumetol). Trans R Soc Trop Med Hyg 92: 564–565.
[32]
Brockman A, Price RN, van Vugt M, Heppner DG, Walsh D, et al. (2000) antimalarial drug susceptibility on the north-western border of Thailand during five years of extensive use of artesunate-mefloquine. Trans R Soc Trop Med Hyg 94: 537–544.
[33]
Price RN, Cassar C, Brockman A, Duraisingh M, van Vugt M, et al. (1999) The pfmdr1 gene is associated with a multidrug-resistant phenotype in from the western border of Thailand. Antimicrob Agents Chemother 43: 2943–2949.
[34]
Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, et al. (2004) Mefloquine resistance in and increased pfmdr1 gene copy number. Lancet 364: 438–447.
[35]
Uhlemann AC, McGready R, Ashley EA, Brockman A, Singhasivanon P, et al. (2007) Intrahost selection of Plasmodium falciparum pfmdr1 alleles after antimalarial treatment on the northwestern border of Thailand. J Infect Dis 195: 134–141.
[36]
Price RN, Uhlemann AC, van Vugt M, Brockman A, Hutagalung R, et al. (2006) Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant malaria. Clin Infect Dis 42: 1570–1577.
[37]
McGready R, Stepniewska K, Edstein MD, Cho T, Gilveray G, et al. (2003) The pharmacokinetics of atovaquone and proguanil in pregnant women with acute falciparum malaria. Eur J Clin Pharmacol 59: 545–552.
[38]
McGready R, Stepniewska K, Seaton E, Cho T, Cho D, et al. (2003) Pregnancy and use of oral contraceptives reduces the biotransformation of proguanil to cycloguanil. Eur J Clin Pharmacol 59: 553–557.
[39]
McGready R, Stepniewska K, Ward SA, Cho T, Gilveray G, et al. (2006) Pharmacokinetics of dihydroartemisinin following oral artesunate treatment of pregnant women with acute uncomplicated falciparum malaria. Eur J Clin Pharmacol 62: 367–371.
[40]
Stepniewska K, Taylor WR, Mayxay M, Price R, Smithuis F, et al. (2004) In vivo assessment of drug efficacy against malaria: duration of follow-up. Antimicrob Agents Chemother 48: 4271–4280.
[41]
Price RN, Dorsey G, Ashley EA, Barnes KI, Baird JK, et al. (2007) World Antimalarial Resistance Network I: clinical efficacy of antimalarial drugs. Malar J 6: 119.
[42]
Kalilani L, Mofolo I, Chaponda M, Rogerson SJ, Alker AP, et al. (2007) A randomized controlled pilot trial of azithromycin or artesunate added to sulfadoxine-pyrimethamine as treatment for malaria in pregnant women. PLoS ONE 2: e1166. doi:10.1371/journal.pone.0001166.
[43]
Guyatt HL, Snow RW (2001) The epidemiology and burden of -related anemia among pregnant women in sub-Saharan Africa. Am J Trop Med Hyg 64: 36–44.
[44]
Price R, van Vugt M, Nosten F, Luxemburger C, Brockman A, et al. (1998) Artesunate versus artemether for the treatment of recrudescent multidrug-resistant falciparum malaria. Am J Trop Med Hyg 59: 883–888.
[45]
Luxemburger C, McGready R, Kham A, Morison L, Cho T, et al. (2001) Effects of malaria during pregnancy on infant mortality in an area of low malaria transmission. Am J Epidemiol 154: 459–465.
[46]
McGready R, Keo NK, Villegas L, White NJ, Looareesuwan S, et al. (2003) Artesunate-atovaquone-proguanil rescue treatment of multidrug-resistant malaria in pregnancy: a preliminary report. Trans R Soc Trop Med Hyg 97: 592–594.
[47]
Ashley EA, Stepniewska K, Lindegardh N, McGready R, Annerberg A, et al. (2007) Pharmacokinetic study of artemether-lumefantrine given once daily for the treatment of uncomplicated multidrug-resistant falciparum malaria. Trop Med Int Health 12: 201–208.
[48]
van Vugt M, Wilairatana P, Gemperli B, Gathmann I, Phaipun L, et al. (1999) Efficacy of six doses of artemether-lumefantrine (benflumetol) in multidrug-resistant malaria. Am J Trop Med Hyg 60: 936–942.