全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2007 

Genome Organization and Gene Expression Shape the Transposable Element Distribution in the Drosophila melanogaster Euchromatin

DOI: 10.1371/journal.pgen.0030210

Full-Text   Cite this paper   Add to My Lib

Abstract:

The distribution of transposable elements (TEs) in a genome reflects a balance between insertion rate and selection against new insertions. Understanding the distribution of TEs therefore provides insights into the forces shaping the organization of genomes. Past research has shown that TEs tend to accumulate in genomic regions with low gene density and low recombination rate. However, little is known about the factors modulating insertion rates across the genome and their evolutionary significance. One candidate factor is gene expression, which has been suggested to increase local insertion rate by rendering DNA more accessible. We test this hypothesis by comparing the TE density around germline- and soma-expressed genes in the euchromatin of Drosophila melanogaster. Because only insertions that occur in the germline are transmitted to the next generation, we predicted a higher density of TEs around germline-expressed genes than soma-expressed genes. We show that the rate of TE insertions is greater near germline- than soma-expressed genes. However, this effect is partly offset by stronger selection for genome compactness (against excess noncoding DNA) on germline-expressed genes. We also demonstrate that the local genome organization in clusters of coexpressed genes plays a fundamental role in the genomic distribution of TEs. Our analysis shows that—in addition to recombination rate—the distribution of TEs is shaped by the interaction of gene expression and genome organization. The important role of selection for compactness sheds a new light on the role of TEs in genome evolution. Instead of making genomes grow passively, TEs are controlled by the forces shaping genome compactness, most likely linked to the efficiency of gene expression or its complexity and possibly their interaction with mechanisms of TE silencing.

References

[1]  Biemont C, Vieira C (2006) Genetics—Junk DNA as an evolutionary force. Nature 443: 521–524.
[2]  Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, et al. (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441: 87–90.
[3]  Lerman DN, Michalak P, Helin AB, Bettencourt BR, Feder ME (2003) Modification of heat-shock gene expression in populations via transposable elements. Mol Biol Evol 20: 135–144.
[4]  Puig M, Caceres M, Ruiz A (2004) Silencing of a gene adjacent to the breakpoint of a widespread Drosophila inversion by a transposon-induced antisense RNA. Proc Natl Acad Sci U S A 101: 9013–9018.
[5]  Bergman CM, Quesneville H, Anxolabehere D, Ashburner M (2006) Recurrent insertion and duplication generate networks of transposable element sequences in the genome. Genome Biol 7: R112.
[6]  Duret L, Marais G, Biemont C (2000) Transposons but not retrotransposons are located preferentially in regions of high recombination rate in . Genetics 156: 1661–1669.
[7]  Medstrand P, van de Lagemaat LN, Mager DL (2002) Retroelement distributions in the human genome: variations associated with age and proximity to genes. Genome Res 12: 1483–1495.
[8]  Wright SI, Agrawal N, Bureau TE (2003) Effects of recombination rate and gene density on transposable element distributions in . Genome Res 13: 1897–1903.
[9]  Kapitonov VV, Jurka J (2003) Molecular paleontology of transposable elements in the genome. Proc Natl Acad Sci U S A 100: 6569–6574.
[10]  Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, et al. (2002) The transposable elements of the euchromatin: a genomics perspective. Genome Biol 3: R84.
[11]  Lipatov M, Lenkov K, Petrov DA, Bergman CM (2005) Paucity of chimeric gene-transposable element transcripts in the genome. BMC Biol 3: 24.
[12]  Rizzon C, Marais G, Gouy M, Biemont C (2002) Recombination rate and the distribution of transposable elements in the genome. Genome Res 12: 400–407.
[13]  Hoogland C, Biémont C (1996) Chromosomal distribution of transposable elements in : test of the ectopic recombination model for maintenance of insertion site number. Genetics 144: 197–204.
[14]  Bartolome C, Maside X, Charlesworth B (2002) On the abundance and distribution of transposable elements in the genome of . Mol Biol Evol 19: 926–937.
[15]  Montgomery EA, Huang SM, Langley CH, Judd BH (1991) Chromosome rearrangement by ectopic recombination in —Genome structure and evolution. Genetics 129: 1085–1098.
[16]  Charlesworth B, Langley CH (1989) The population-genetics of Drosophila transposable elements. Annu Rev Genet 23: 251–287.
[17]  Bellen HJ, Levis RW, Liao GC, He YC, Carlson JW, et al. (2004) The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167: 761–781.
[18]  Shilova VY, Garbuz DG, Myasyankina EN, Chen B, Evgen'ev MB, et al. (2006) Remarkable site specificity of local transposition into the HsP70 promoter of . Genetics 173: 809–820.
[19]  Guimond N, Bideshi DK, Pinkerton AC, Atkinson PW, O'Brochta DA (2003) Patterns of Hermes transposition in . Mol Genet Genomics 268: 779–790.
[20]  Ladeveze V, Aulard S, Chaminade N, Biemont C, Periquet G, et al. (2001) Dynamics of the hobo transposable element in transgenic lines of Drosophila melanogaster. Genetical Res 77: 135–142.
[21]  Bownes M (1990) Preferential insertion of P-elements into genes expressed in the germ-line of . Mol Gen Genet 222: 457–460.
[22]  Liao GC, Rehm EJ, Rubin GM (2000) Insertion site preferences of the P transposable element in . Proc Natl Acad Sci U S A 97: 3347–3351.
[23]  Timakov B, Liu X, Turgut I, Zhang P (2002) Timing and targeting of P-element local transposition in the male germline cells of . Genetics 160: 1011–1022.
[24]  Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, et al. (2005) Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1: 166–175. doi: 10.1371/journal.pcbi.0010022.
[25]  Chintapalli VR, Wang J, Dow JAT (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genet 39: 715–720.
[26]  Blumenstiel JP, Hartl DL, Lozovsky ER (2002) Patterns of insertion and deletion in contrasting chromatin domains. Mol Biol Evol 19: 2211–2225.
[27]  Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou MM, et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034–1050.
[28]  Haddrill PR, Charlesworth B, Halligan DL, Andolfatto P (2005) Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol 6: R67.
[29]  Halligan DL, Keightley PD (2006) Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res 16: 875–884.
[30]  Ometto L, Stephan W, De Lorenzo D (2005) Insertion/deletion and nucleotide polymorphism data reveal constraints in introns and intergenic regions. Genetics 169: 1521–1527.
[31]  Wright S (1933) Inbreeding and homozygosis. Proc Natl Acad Sci U S A 19: 411–420.
[32]  Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA (2002) Selection for short introns in highly expressed genes. Nature Genet 31: 415–418.
[33]  Pozzoli U, Menozzi G, Comi GP, Cagliani R, Bresolin N, et al. (2007) Intron size in mammals: complexity comes to terms with economy. Trends Genet 23: 20–24.
[34]  Fox-Walsh KL, Dou YM, Lam BJ, Hung SP, Baldi PF, et al. (2005) The architecture of pre-mRNAs affects mechanisms of splice-site pairing. Proc Natl Acad Sci U S A 102: 16176–16181.
[35]  Thygesen HH, Zwinderman AH (2005) Modelling the correlation between the activities of adjacent genes in Drosophila. BMC Bioinformatics 6: 10.
[36]  Caballero A (1995) On the effective size of populations with separate sexes, with particular reference to sex-linked genes. Genetics 139: 1007–1011.
[37]  Andolfatto P (2001) Contrasting patterns of X-linked and autosomal nucleotide variation in Drosophila melanogaster and . Mol Biol Evol 18: 279–290.
[38]  Haddrill PR, Thornton KR, Charlesworth B, Andolfatto P (2005) Multilocus patterns of nucleotide variability and the demographic and selection history of Drosophila melanogaster populations. Genome Res 15: 790–799.
[39]  Mousset S, Derome N (2004) Molecular polymorphism in and D. simulans: what have we learned from recent studies? Genetica 120: 79–86.
[40]  Straub T, Becker PB (2007) Dosage compensation: the beginning and end of generalization. Nat Rev Genet 8: 47–57.
[41]  Pasyukova EG, Nuzhdin SV (1993) Doc and copia instability in an isogenic stock. Mol Gen Genet 240: 302–306.
[42]  Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, et al. (2001) The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291: 1289.
[43]  Cohen BA, Mitra RD, Hughes JD, Church GM (2000) A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nature Genet 26: 183–186.
[44]  Lercher MJ, Hurst LD (2006) Co-expressed yeast genes cluster over a long range but are not regularly spaced. J Mol Biol 359: 825–831.
[45]  Roy PJ, Stuart JM, Lund J, Kim SK (2002) Chromosomal clustering of muscle-expressed genes in . Nature 418: 975–979.
[46]  Williams EJB, Bowles DJ (2004) Coexpression of neighboring genes in the genome of . Genome Res 14: 1060–1067.
[47]  Sproul D, Gilbert N, Bickmore WA (2005) The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet 6: 775–781.
[48]  Spellman PT, Rubin GM (2002) Evidence for large domains of similarly expressed genes in the Drosophila genome. J Biol 1: 5.
[49]  Hurst LD, Pal C, Lercher MJ (2004) The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5: 299–310.
[50]  Bachtrog D (2003) Adaptation shapes patterns of genome evolution on sexual and asexual chromosomes in Drosophila. Nature Genet 34: 215–219.
[51]  Kavi HH, Fernandez HR, Xie WW, Birchler JA (2005) RNA silencing in Drosophila. FEBS Lett 579: 5940–5949.
[52]  Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8: 272–285.
[53]  Sun FL, Haynes K, Simpson CL, Lee SD, Collins L, et al. (2004) cis-Acting determinants of heterochromatin formation on chromosome four. Mol Cell Biol 24: 8210–8220.
[54]  Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, et al. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128: 1089–1103.
[55]  Biemont C, Vieira C (2005) What transposable elements tell us about genome organization and evolution: the case of Drosophila. Cytogenet Genome Res 110: 25–34.
[56]  Vinogradov AE (2004) Compactness of human housekeeping genes: selection for economy or genomic design? Trends Genet 20: 543–543.
[57]  Nelson CE, Hersh BM, Carroll SB (2004) The regulatory content of intergenic DNA shapes genome architecture. Genome Biol 5: R25.
[58]  Petrov DA, Chao YC, Stephenson EC, Hartl DL (1998) Pseudogene evolution in Drosophila suggests a high rate of DNA loss. Mol Biol Evol 15: 1562–1567.
[59]  Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2000) Evidence for DNA loss as a determinant of genome size. Science 287: 1060–1062.
[60]  Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6: 699–708.
[61]  Vinogradov AE (1999) Intron-genome size relationship on a large evolutionary scale. J Mol Evol 49: 376–384.
[62]  Betran E, Bai YS, Motiwale M (2006) Fast protein evolution and germ line expression of a Drosophila parental gene and its young retroposed paralog. Mol Biol Evol 23: 2191–2202.
[63]  Vinckenbosch N, Dupanloup I, Kaessmann H (2006) Evolutionary fate of retroposed gene copies in the human genome. Cytogenet Genome Res 103: 3220–3225.
[64]  Betran E, Thornton K, Long M (2002) Retroposed new genes out of the X in Drosophila. Genome Res 12: 1854–1859.
[65]  Emerson JJ, Kaessmann H, Betran E, Long MY (2004) Extensive gene traffic on the mammalian X chromosome. Science 303: 537–540.
[66]  Hey J, Kliman RM (2002) Interactions between natural selection, recombination and gene density in the genes of Drosophila. Genetics 160: 595–608.
[67]  Parisi M, Nuttall R, Edwards P, Minor J, Naiman D, et al. (2004) A survey of ovary-, testis-, and soma-biased gene expression in adults. Genome Biol 5: R40.
[68]  Gupta V, Parisi M, Sturgill D, Nuttall R, Doctolero M, et al. (2006) Global analysis of X-chromosome dosage compensation. J Biol 5: 3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133