全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Anti-gp120 Minibody Gene Transfer to Female Genital Epithelial Cells Protects against HIV-1 Virus Challenge In Vitro

DOI: 10.1371/journal.pone.0026473

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb) that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS. Methods and Findings This study tested the hypothesis that adeno-associated virus (AAV)-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc), or “minibody” was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1bal in an organotypic human vaginal epithelial cell (VEC) model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP. Conclusion This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

References

[1]  Cole AM, Cole AL (2008) Antimicrobial polypeptides are key anti-HIV-1 effector molecules of cervicovaginal host defense. Am J Reprod Immunol 59: 27–34.
[2]  Kaushic C, Ferreira VH, Kafka JK, Nazli A (2010) HIV infection in the female genital tract: discrete influence of the local mucosal microenvironment. Am J Reprod Immunol 63: 566–575.
[3]  Ghosh M, Fahey JV, Shen Z, Lahey T, Cu-Uvin S, et al. (2010) Anti-HIV activity in cervical-vaginal secretions from HIV-positive and -negative women correlate with innate antimicrobial levels and IgG antibodies. PLoS One 5: e11366.
[4]  King AE, Critchley HO, Kelly RW (2000) Presence of secretory leukocyte protease inhibitor in human endometrium and first trimester decidua suggests an antibacterial protective role. Mol Hum Reprod 6: 191–196.
[5]  Novak RM, Donoval BA, Graham PJ, Boksa LA, Spear G, et al. (2007) Cervicovaginal levels of lactoferrin, secretory leukocyte protease inhibitor, and RANTES and the effects of coexisting vaginoses in human immunodeficiency virus (HIV)-seronegative women with a high risk of heterosexual acquisition of HIV infection. Clin Vaccine Immunol 14: 1102–1107.
[6]  Tomescu C, Abdulhaqq S, Montaner LJ (2011) Evidence for the innate immune response as a correlate of protection in human immunodeficiency virus (HIV)-1 highly exposed seronegative subjects (HESN). Clin Exp Immunol 164: 158–169.
[7]  Bobardt MD, Chatterji U, Schaffer L, de Witte L, Gallay PA (2010) Syndecan-Fc hybrid molecule as a potent in vitro microbicidal anti-HIV-1 agent. Antimicrob Agents Chemother 54: 2753–2766.
[8]  Bobardt MD, Saphire AC, Hung HC, Yu X, Van der Schueren B, et al. (2003) Syndecan captures, protects, and transmits HIV to T lymphocytes. Immunity 18: 27–39.
[9]  Bobardt MD, Chatterji U, Selvarajah S, Van der Schueren B, David G, et al. (2007) Cell-free human immunodeficiency virus type 1 transcytosis through primary genital epithelial cells. J Virol 81: 395–405.
[10]  Wu Z, Chen Z, Phillips DM (2003) Human genital epithelial cells capture cell-free human immunodeficiency virus type 1 and transmit the virus to CD4+Cells: implications for mechanisms of sexual transmission. J Infect Dis 188: 1473–1482.
[11]  Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G, et al. (2009) Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLoS Pathog 5: e1000433.
[12]  Burton DR, Pyati J, Koduri R, Sharp SJ, Thornton GB, et al. (1994) Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266: 1024–1027.
[13]  de Parseval A, Bobardt MD, Chatterji A, Chatterji U, Elder JH, et al. (2005) A highly conserved arginine in gp120 governs HIV-1 binding to both syndecans and CCR5 via sulfated motifs. J Biol Chem 280: 39493–39504.
[14]  Walker LM, Burton DR (2010) Rational antibody-based HIV-1 vaccine design: current approaches and future directions. Curr Opin Immunol 22: 358–366.
[15]  Mantis NJ, Palaia J, Hessell AJ, Mehta S, Zhu Z, et al. (2007) Inhibition of HIV-1 infectivity and epithelial cell transfer by human monoclonal IgG and IgA antibodies carrying the b12 V region. J Immunol 179: 3144–3152.
[16]  Parren PW, Marx PA, Hessell AJ, Luckay A, Harouse J, et al. (2001) Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J Virol 75: 8340–8347.
[17]  Bosch A, Perret E, Desmaris N, Heard JM (2000) Long-term and significant correction of brain lesions in adult mucopolysaccharidosis type VII mice using recombinant AAV vectors. Mol Ther 1: 63–70.
[18]  Flotte TR, Afione SA, Conrad C, McGrath SA, Solow R, et al. (1993) Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci U S A 90: 10613–10617.
[19]  Johnson PR, Schnepp BC, Zhang J, Connell MJ, Greene SM, et al. (2009) Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med 15: 901–906.
[20]  Nakai H, Herzog RW, Hagstrom JN, Walter J, Kung SH, et al. (1998) Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 91: 4600–4607.
[21]  Weber M, Rabinowitz J, Provost N, Conrath H, Folliot S, et al. (2003) Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 7: 774–781.
[22]  Xiao W, Berta SC, Lu MM, Moscioni AD, Tazelaar J, et al. (1998) Adeno-associated virus as a vector for liver-directed gene therapy. J Virol 72: 10222–10226.
[23]  Brantly ML, Chulay JD, Wang L, Mueller C, Humphries M, et al. (2009) Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc Natl Acad Sci U S A 106: 16363–16368.
[24]  Fichorova RN, Rheinwald JG, Anderson DJ (1997) Generation of papillomavirus-immortalized cell lines from normal human ectocervical, endocervical, and vaginal epithelium that maintain expression of tissue-specific differentiation proteins. Biol Reprod 57: 847–855.
[25]  Koup RA, Ho DD, Poli G, Fauci AS (2001) Isolation and quantitation of HIV in peripheral blood. Curr Protoc Immunol Chapter 12: Unit 12 12:
[26]  Martens JE, Arends J, Van der Linden PJ, De Boer BA, Helmerhorst TJ (2004) Cytokeratin 17 and p63 are markers of the HPV target cell, the cervical stem cell. Anticancer Res 24: 771–775.
[27]  Poonia B, Walter L, Dufour J, Harrison R, Marx PA, et al. (2006) Cyclic changes in the vaginal epithelium of normal rhesus macaques. J Endocrinol 190: 829–835.
[28]  Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, et al. (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329: 1168–1174.
[29]  Schmidt M, Voutetakis A, Afione S, Zheng C, Mandikian D, et al. (2008) Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid- and heparan sulfate proteoglycan-independent transduction activity. J Virol 82: 1399–1406.
[30]  Halbert CL, Allen JM, Miller AD (2001) Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol 75: 6615–6624.
[31]  Veazey RS, Shattock RJ, Pope M, Kirijan JC, Jones J, et al. (2003) Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat Med 9: 343–346.
[32]  Akache B, Grimm D, Pandey K, Yant SR, Xu H, et al. (2006) The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 80: 9831–9836.
[33]  Warrington KH Jr, Herzog RW (2006) Treatment of human disease by adeno-associated viral gene transfer. Hum Genet 119: 571–603.
[34]  Fang J, Qian JJ, Yi S, Harding TC, Tu GH, et al. (2005) Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 23: 584–590.
[35]  Marasco WA (2005) Therapeutic antibody gene transfer. Nat Biotechnol 23: 551–552.
[36]  Klein JS, Gnanapragasam PN, Galimidi RP, Foglesong CP, West AP Jr, et al. (2009) Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proc Natl Acad Sci U S A 106: 7385–7390.
[37]  Labrijn AF, Poignard P, Raja A, Zwick MB, Delgado K, et al. (2003) Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J Virol 77: 10557–10565.
[38]  Blaskewicz CD, Pudney J, Anderson DJ (2011) Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod 85: 97–104.
[39]  Livingston JB, Lu S, Robinson H, Anderson DJ (1998) Immunization of the female genital tract with a DNA-based vaccine. Infect Immun 66: 322–329.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133