全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Lipoprotein Lipase Inhibits Hepatitis C Virus (HCV) Infection by Blocking Virus Cell Entry

DOI: 10.1371/journal.pone.0026637

Full-Text   Cite this paper   Add to My Lib

Abstract:

A distinctive feature of HCV is that its life cycle depends on lipoprotein metabolism. Viral morphogenesis and secretion follow the very low-density lipoprotein (VLDL) biogenesis pathway and, consequently, infectious HCV in the serum is associated with triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) hydrolyzes TRL within chylomicrons and VLDL but, independently of its catalytic activity, it has a bridging activity, mediating the hepatic uptake of chylomicrons and VLDL remnants. We previously showed that exogenously added LPL increases HCV binding to hepatoma cells by acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate, while simultaneously decreasing infection levels. We show here that LPL efficiently inhibits cell infection with two HCV strains produced in hepatoma cells or in primary human hepatocytes transplanted into uPA-SCID mice with fully functional human ApoB-lipoprotein profiles. Viruses produced in vitro or in vivo were separated on iodixanol gradients into low and higher density populations, and the infection of Huh 7.5 cells by both virus populations was inhibited by LPL. The effect of LPL depended on its enzymatic activity. However, the lipase inhibitor tetrahydrolipstatin restored only a minor part of HCV infectivity, suggesting an important role of the LPL bridging function in the inhibition of infection. We followed HCV cell entry by immunoelectron microscopy with anti-envelope and anti-core antibodies. These analyses demonstrated the internalization of virus particles into hepatoma cells and their presence in intracellular vesicles and associated with lipid droplets. In the presence of LPL, HCV was retained at the cell surface. We conclude that LPL efficiently inhibits HCV infection by acting on TRL associated with HCV particles through mechanisms involving its lipolytic function, but mostly its bridging function. These mechanisms lead to immobilization of the virus at the cell surface. HCV-associated lipoproteins may therefore be a promising target for the development of new therapeutic approaches.

References

[1]  Shepard CW, Finelli L, Alter MJ (2005) Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 5: 558–567.
[2]  Pawlotsky JM (2006) Therapy of hepatitis C: from empiricism to eradication. Hepatology 43: S207–220.
[3]  Keam SJ, Cvetkovic RS (2008) Peginterferon-alpha-2a (40 kD) Plus Ribavirin: A Review of its Use in the Management of Chronic Hepatitis C Mono-Infection. Drugs 68: 1273–1317.
[4]  Bartenschlager R, Cosset FL, Lohmann V (2010) Hepatitis C virus replication cycle. J Hepatol 53: 583–585.
[5]  Huang H, Sun F, Owen DM, Li W, Chen Y, et al. (2007) Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci U S A 104: 5848–5853.
[6]  Kapadia SB, Chisari FV (2005) Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci U S A 102: 2561–2566.
[7]  Ye J (2007) Reliance of host cholesterol metabolic pathways for the life cycle of hepatitis C virus. PLoS Pathog 3: e108.
[8]  Gastaminza P, Cheng G, Wieland S, Zhong J, Liao W, et al. (2008) Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. J Virol 82: 2120–2129.
[9]  Jones DM, McLauchlan J (2010) Hepatitis C virus: assembly and release of virus particles. J Biol Chem 285: 22733–22739.
[10]  Andre P, Perlemuter G, Budkowska A, Brechot C, Lotteau V (2005) Hepatitis C virus particles and lipoprotein metabolism. Sem Liv Dis 25: 93–104.
[11]  Petit JM, Benichou M, Duvillard L, Jooste V, Bour JB, et al. (2003) Hepatitis C virus-associated hypobetalipoproteinemia is correlated with plasma viral load, steatosis, and liver fibrosis. Am J Gastro 98: 1150–1154.
[12]  Piver E, Roingeard P, Pages JC (2010) The cell biology of hepatitis C virus (HCV) lipid addiction: molecular mechanisms and its potential importance in the clinic. Int J Biochem Cell Biol 42: 869–879.
[13]  Thomssen R, Bonk S, Propfe C, Heermann KH, Kochel HG, et al. (1992) Association of hepatitis C virus in human sera with beta-lipoprotein. Med Microb Immuno 181: 293–300.
[14]  Bradley D, McCaustland K, Krawczynski K, Spelbring J, Humphrey C, et al. (1991) Hepatitis C virus: buoyant density of the factor VIII-derived isolate in sucrose. J Med Virol 34: 206–208.
[15]  Andre P, Komurian-Pradel F, Deforges S, Perret M, Berland JL, et al. (2002) Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 76: 6919–6928.
[16]  Nielsen SU, Bassendine MF, Burt AD, Martin C, Pumeechockchai W, et al. (2006) Association between hepatitis C virus and very-low-density lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients. J Virol 80: 2418–2428.
[17]  Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX (1999) Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Nat Acad Sci U S A 96: 12766–12771.
[18]  Aizaki H, Morikawa K, Fukasawa M, Hara H, Inoue Y, et al. (2008) Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. J Virol 82: 5715–5724.
[19]  Yamamoto M, Aizaki H, Fukasawa M, Teraoka T, Miyamura T, et al. (2011) The Structural requirements of virion-associated cholesterol for morphogenesis and infectivity of hepatitis C virus. J Gen Virol 92: 2082–2087.
[20]  Lindenbach BD, Meuleman P, Ploss A, Vanwolleghem T, Syder AJ, et al. (2006) Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci U S A 103: 3805–3809.
[21]  Haid S, Pietschmann T, Pecheur EI (2009) Low pH-dependent hepatitis C virus membrane fusion depends on E2 integrity, target lipid composition, and density of virus particles. J Biol Chem 284: 17657–17667.
[22]  Burlone ME, Budkowska A (2009) Hepatitis C virus cell entry: role of lipoproteins and cellular receptors. J Gen Virol 90: 1055–1070.
[23]  Mead JR, Irvine SA, Ramji DP (2002) Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med 80: 753–769.
[24]  Zheng C, Murdoch SJ, Brunzell JD, Sacks FM (2006) Lipoprotein lipase bound to apolipoprotein B lipoproteins accelerates clearance of postprandial lipoproteins in humans. Arterioscler Thromb Vasc Biol 26: 891–896.
[25]  Cooper AD (1997) Hepatic uptake of chylomicron remnants. J Lipid Res 38: 2173–2192.
[26]  Dallinga-Thie GM, Franssen R, Mooij HL, Visser ME, Hassing HC, et al. (2010) The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis 211: 1–8.
[27]  Merkel M, Kako Y, Radner H, Cho IS, Ramasamy R, et al. (1998) Catalytically inactive lipoprotein lipase expression in muscle of transgenic mice increases very low density lipoprotein uptake: direct evidence that lipoprotein lipase bridging occurs in vivo. Proc Natl Acad Sci U S A 95: 13841–13846.
[28]  Beisiegel U, Weber W, Bengtsson-Olivecrona G (1991) Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A 88: 8342–8346.
[29]  Berryman DE, Bensadoun A (1995) Heparan sulfate proteoglycans are primarily responsible for the maintenance of enzyme activity, binding, and degradation of lipoprotein lipase in Chinese hamster ovary cells. J Biol Chem 270: 24525–24531.
[30]  Williams KJ (2008) Molecular processes that handle–and mishandle–dietary lipids. J Clin Invest 118: 3247–3259.
[31]  Hu L, van der Hoogt CC, Espirito Santo SM, Out R, Kypreos KE, et al. (2008) The hepatic uptake of VLDL in lrp-ldlr-/-vldlr-/- mice is regulated by LPL activity and involves proteoglycans and SR-BI. J Lipid Res 49: 1553–1561.
[32]  Andreo U, Maillard P, Kalinina O, Walic M, Meurs E, et al. (2007) Lipoprotein lipase mediates hepatitis C virus (HCV) cell entry and inhibits HCV infection. Cell Microbiol 9: 2445–2456.
[33]  Meuleman P, Libbrecht L, De Vos R, de Hemptinne B, Gevaert K, et al. (2005) Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology 41: 847–856.
[34]  Meuleman P, Leroux-Roels G (2008) The human liver-uPA-SCID mouse: a model for the evaluation of antiviral compounds against HBV and HCV. Antiviral Res 80: 231–238.
[35]  Bukh J, Meuleman P, Tellier R, Engle RE, Feinstone SM, et al. (2010) Challenge pools of hepatitis C virus genotypes 1-6 prototype strains: replication fitness and pathogenicity in chimpanzees and human liver-chimeric mouse models. J Infect Dis 201: 1381–1389.
[36]  Steenbergen RH, Joyce MA, Lund G, Lewis J, Chen R, et al. (2010) Lipoprotein profiles in SCID/uPA mice transplanted with human hepatocytes become human-like and correlate with HCV infection success. Am J Physiol Gastrointest Liver Physiol 299: G844–854.
[37]  Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, et al. (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11: 791–796.
[38]  Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, et al. (2005) Complete replication of hepatitis C virus in cell culture. Science 309: 623–626.
[39]  Chapman MJ, Goldstein S, Lagrange D, Laplaud PM (1981) A Density Gradient Ultra-Centrifugal Procedure for the Isolation of the Major Lipoprotein Classes from Human-Serum. J Lipid Res 22: 339–358.
[40]  Milosavljevic D, Kontush A, Griglio S, Le Naour G, Thillet J, et al. (2003) VLDL-induced triglyceride accumulation in human macrophages is mediated by modulation of LPL lipolytic activity in the absence of change in LPL mass. Biochim Biophys Acta 1631: 51–60.
[41]  Raisonnier A, Etienne J, Arnault F, Brault D, Noe L, et al. (1995) Comparison of the cDNA and amino acid sequences of lipoprotein lipase in eight species. Comp Biochem Physiol B Biochem Mol Biol 111: 385–398.
[42]  Bassendine MF, Sheridan DA, Felmlee DJ, Bridge SH, Toms GL, et al. (2011) HCV and the hepatic lipid pathway as a potential treatment target. J Hepatol In Press. available online 28 June 2011.
[43]  Bukh J, Purcell RH (2006) A milestone for hepatitis C virus research: A virus generated in cell culture is fully viable in vivo. Proc Natl Acad Sci U S A 103: 3500–3501.
[44]  Icard V, Diaz O, Scholtes C, Perrin-Cocon L, Ramiere C, et al. (2009) Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins. PLoS One 4: e4233.
[45]  Meex SJ, Andreo U, Sparks JD, Fisher EA (2011) Huh-7 or HepG2 cells: which is the better model for studying human apolipoprotein-B100 assembly and secretion? J Lipid Res 52: 152–158.
[46]  Gastaminza P, Kapadia SB, Chisari FV (2006) Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. J Virol 80: 11074–11081.
[47]  Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, et al. (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102: 9294–9299.
[48]  Lookene A, Skottova N, Olivecrona G (1994) Interactions of lipoprotein lipase with the active-site inhibitor tetrahydrolipstatin (Orlistat). Eur J Biochem 222: 395–403.
[49]  Maillard P, Krawczynski K, Nitkiewicz J, Bronnert C, Sidorkiewicz M, et al. (2001) Nonenveloped nucleocapsids of hepatitis C virus in the serum of infected patients. J Virol 75: 8240–8250.
[50]  Chang KS, Jiang J, Cai Z, Luo G (2007) Human apolipoprotein e is required for infectivity and production of hepatitis C virus in cell culture. J Virol 81: 13783–13793.
[51]  Molina S, Castet V, Fournier-Wirth C, Pichard-Garcia L, Avner R, et al. (2007) The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus. J Hepatol 46: 411–419.
[52]  Owen DM, Huang H, Ye J, Gale M Jr (2009) Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor. Virology 394: 99–108.
[53]  Maillard P, Huby T, Andreo U, Moreau M, Chapman J, et al. (2006) The interaction of natural hepatitis C virus with human scavenger receptor SR-BI/Cla1 is mediated by ApoB-containing lipoproteins. Faseb J 20: 735–737.
[54]  von Hahn T, Yoon JC, Alter H, Rice CM, Rehermann B, et al. (2007) Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo. Gastroenterology 132: 667–678.
[55]  Haberstroh A, Schnober EK, Zeisel MB, Carolla P, Barth H, et al. (2008) Neutralizing host responses in hepatitis C virus infection target viral entry at postbinding steps and membrane fusion. Gastroenterology 135: 1719–1728 e1711.
[56]  Tao W, Xu C, Ding Q, Li R, Xiang Y, et al. (2009) A single point mutation in E2 enhances hepatitis C virus infectivity and alters lipoprotein association of viral particles. Virology 395: 67–76.
[57]  Bradley DW, Krawczynski K, Ebert JW, McCaustland KA, Choo QL, et al. (1990) Parenterally transmitted non-A, non-B hepatitis: virus-specific antibody response patterns in hepatitis C virus-infected chimpanzees. Gastroenterology 99: 1054–1060.
[58]  Felmlee DJ, Sheridan DA, Bridge SH, Nielsen SU, Milne RW, et al. (2010) Intravascular transfer contributes to postprandial increase in numbers of very-low-density hepatitis C virus particles. Gastroenterology 139: 1774–1783, 1783 e1771-1776.
[59]  Ehrhardt M, Leidinger P, Keller A, Baumert T, Díez J, et al. (2011) Profound differences of microRNA expression patterns in hepatocytes and hepatoma cell lines commonly used in hepatitis C virus studies. Hepatology 54: 1111–1112.
[60]  Podevin P, Carpentier A, Pene V, Aoudjehane L, Carriere M, et al. (2010) Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes. Gastroenterology 139: 1355–1364.
[61]  Nahmias Y, Goldwasser J, Casali M, van Poll D, Wakita T, et al. (2008) Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 47: 1437–1445.
[62]  Hishiki T, Shimizu Y, Tobita R, Sugiyama K, Ogawa K, et al. (2010) Infectivity of hepatitis C virus is influenced by association with apolipoprotein E isoforms. J Virol 84: 12048–12057.
[63]  Casaroli-Marano RP, Garcia R, Vilella E, Olivecrona G, Reina M, et al. (1998) Binding and intracellular trafficking of lipoprotein lipase and triacylglycerol-rich lipoproteins by liver cells. J Lipid Res 39: 789–806.
[64]  Jong MC, Hofker MH, Havekes LM (1999) Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 19: 472–484.
[65]  Beigneux AP, Davies BS, Bensadoun A, Fong LG, Young SG (2009) GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. J Lipid Res. 50. pp. S57–62.
[66]  Fuki IV, Kuhn KM, Lomazov IR, Rothman VL, Tuszynski GP, et al. (1997) The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. J Clin Invest 100: 1611–1622.
[67]  Thomssen R, Bonk S (2002) Virolytic action of lipoprotein lipase on hepatitis C virus in human sera. Med Microbiol Immunol 191: 17–24.
[68]  Shimizu Y, Hishiki T, Sugiyama K, Ogawa K, Funami K, et al. (2010) Lipoprotein lipase and hepatic triglyceride lipase reduce the infectivity of hepatitis C virus (HCV) through their catalytic activities on HCV-associated lipoproteins. Virology 407: 152–159.
[69]  Heeren J, Niemeier A, Merkel M, Beisiegel U (2002) Endothelial-derived lipoprotein lipase is bound to postprandial triglyceride-rich lipoproteins and mediates their hepatic clearance in vivo. J Mol Med (Berl) 80: 576–584.
[70]  Salinelli S, Lo JY, Mims MP, Zsigmond E, Smith LC, et al. (1996) Structure-function relationship of lipoprotein lipase-mediated enhancement of very low density lipoprotein binding and catabolism by the low density lipoprotein receptor. Functional importance of a properly folded surface loop covering the catalytic center. J Biol Chem 271: 21906–21913.
[71]  Flint M, von Hahn T, Zhang J, Farquhar M, Jones CT, et al. (2006) Diverse CD81 proteins support hepatitis C virus infection. J Virol 80: 11331–11342.
[72]  Koutsoudakis G, Herrmann E, Kallis S, Bartenschlager R, Pietschmann T (2007) The level of CD81 cell surface expression is a key determinant for productive entry of hepatitis C virus into host cells. J Virol 81: 588–598.
[73]  Sabahi A, Marsh KA, Dahari H, Corcoran P, Lamora JM, et al. (2010) The rate of hepatitis C virus infection initiation in vitro is directly related to particle density. Virology 407: 110–119.
[74]  Marcel YL, Hogue M, Weech PK, Davignon J, Milne RW (1988) Expression of apolipoprotein B epitopes in lipoproteins. Relationship to conformation and function. Arteriosclerosis 8: 832–844.
[75]  Bradley WA, Hwang SL, Karlin JB, Lin AH, Prasad SC, et al. (1984) Low-density lipoprotein receptor binding determinants switch from apolipoprotein E to apolipoprotein B during conversion of hypertriglyceridemic very-low-density lipoprotein to low-density lipoproteins. J Biol Chem 259: 14728–14735.
[76]  Cribier B, Schmitt C, Kirn A, Stoll-Keller F (1998) Inhibition of hepatitis C virus adsorption to peripheral blood mononuclear cells by dextran sulfate. Arch Virol 143: 375–379.
[77]  Barth H, Schnober EK, Zhang F, Linhardt RJ, Depla E, et al. (2006) Viral and cellular determinants of the hepatitis C virus envelope-heparan sulfate interaction. J Virol 80: 10579–10590.
[78]  Khalil MF, Wagner WD, Goldberg IJ (2004) Molecular interactions leading to lipoprotein retention and the initiation of atherosclerosis. Arterioscler Thromb Vasc Biol 24: 2211–2218.
[79]  Boren J, Lookene A, Makoveichuk E, Xiang S, Gustafsson M, et al. (2001) Binding of low density lipoproteins to lipoprotein lipase is dependent on lipids but not on apolipoprotein B. J Biol Chem 276: 26916–26922.
[80]  Gustafsson M, Levin M, Skalen K, Perman J, Friden V, et al. (2007) Retention of low-density lipoprotein in atherosclerotic lesions of the mouse: evidence for a role of lipoprotein lipase. Circ Res 101: 777–783.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133