Dravet syndrome (DS) is a genetically determined epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene. Since 2003, we have performed molecular analyses in a large series of patients with DS, 27% of whom were negative for mutations or rearrangements in SCN1A. In order to identify new genes responsible for the disorder in the SCN1A-negative patients, 41 probands were screened for micro-rearrangements with Illumina high-density SNP microarrays. A hemizygous deletion on chromosome Xq22.1, encompassing the PCDH19 gene, was found in one male patient. To confirm that PCDH19 is responsible for a Dravet-like syndrome, we sequenced its coding region in 73 additional SCN1A-negative patients. Nine different point mutations (four missense and five truncating mutations) were identified in 11 unrelated female patients. In addition, we demonstrated that the fibroblasts of our male patient were mosaic for the PCDH19 deletion. Patients with PCDH19 and SCN1A mutations had very similar clinical features including the association of early febrile and afebrile seizures, seizures occurring in clusters, developmental and language delays, behavioural disturbances, and cognitive regression. There were, however, slight but constant differences in the evolution of the patients, including fewer polymorphic seizures (in particular rare myoclonic jerks and atypical absences) in those with PCDH19 mutations. These results suggest that PCDH19 plays a major role in epileptic encephalopathies, with a clinical spectrum overlapping that of DS. This disorder mainly affects females. The identification of an affected mosaic male strongly supports the hypothesis that cellular interference is the pathogenic mechanism.
References
[1]
Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, et al. (2001) De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 68: 1327–1332.
[2]
Weaving LS, Christodoulou J, Williamson SL, Friend KL, McKenzie OL, et al. (2004) Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet 75: 1079–1093.
[3]
Tao J, Van Esch H, Hagedorn-Greiwe M, Hoffmann K, Moser B, et al. (2004) Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am J Hum Genet 75: 1149–1154.
[4]
Stromme P, Mangelsdorf ME, Shaw MA, Lower KM, Lewis SM, et al. (2002) Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet 30: 441–445.
[5]
Roll P, Rudolf G, Pereira S, Royer B, Scheffer IE, et al. (2006) SRPX2 mutations in disorders of language cortex and cognition. Hum Mol Genet 15: 1195–1207.
[6]
Dibbens LM, Tarpey PS, Hynes K, Bayly MA, Scheffer IE, et al. (2008) X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet 40: 776–781.
[7]
Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar O (2005) Severe myoclonic epilepsy in infancy: Dravet syndrome. AdvNeurol 95: 71–102.
[8]
Wolff M, Casse-Perrot C, Dravet C (2006) Severe myoclonic epilepsy of infants (Dravet syndrome): natural history and neuropsychological findings. Epilepsia 47: Suppl 245–48.
[9]
Depienne C, Arzimanoglou A, Trouillard O, Fedirko E, Baulac S, et al. (2006) Parental mosaicism can cause recurrent transmission of SCN1A mutations associated with severe myoclonic epilepsy of infancy. Hum Mutat 27: 389.
[10]
Mulley JC, Scheffer IE, Petrou S, Dibbens LM, Berkovic SF, et al. (2005) SCN1A mutations and epilepsy. HumMutat 25: 535–542.
[11]
Madia F, Striano P, Gennaro E, Malacarne M, Paravidino R, et al. (2006) Cryptic chromosome deletions involving SCN1A in severe myoclonic epilepsy of infancy. Neurology 67: 1230–1235.
[12]
Mulley JC, Nelson P, Guerrero S, Dibbens L, Iona X, et al. (2006) A new molecular mechanism for severe myoclonic epilepsy of infancy: exonic deletions in SCN1A. Neurology 67: 1094–1095.
[13]
Suls A, Claeys KG, Goossens D, Harding B, Van Luijk R, et al. (2006) Microdeletions involving the SCN1A gene may be common in SCN1A-mutation-negative SMEI patients. Hum Mutat 27: 914–920.
[14]
Wang JW, Kurahashi H, Ishii A, Kojima T, Ohfu M, et al. (2008) Microchromosomal deletions involving SCN1A and adjacent genes in severe myoclonic epilepsy in infancy. Epilepsia 49: 1528–1534.
[15]
Depienne C, Trouillard O, Saint-Martin C, Gourfinkel-An I, Bouteiller D, et al. (2008) Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet. Nov 13. [Epub ahead of print].
[16]
Harkin LA, McMahon JM, Iona X, Dibbens L, Pelekanos JT, et al. (2007) The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain 130: 843–852.
[17]
Marini C, Mei D, Temudo T, Ferrari AR, Buti D, et al. (2007) Idiopathic epilepsies with seizures precipitated by fever and SCN1A abnormalities. Epilepsia 48: 1678–1685.
[18]
Claes L, Ceulemans B, Audenaert D, Smets K, Lofgren A, et al. (2003) De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. HumMutat 21: 615–621.
[19]
Pinto D, Marshall C, Feuk L, Scherer SW (2007) Copy-number variation in control population cohorts. Hum Mol Genet 16 Spec No. 2: R168–173.
[20]
Frank M, Kemler R (2002) Protocadherins. Curr Opin Cell Biol 14: 557–562.
[21]
Wieland I, Jakubiczka S, Muschke P, Cohen M, Thiele H, et al. (2004) Mutations of the ephrin-B1 gene cause craniofrontonasal syndrome. Am J Hum Genet 74: 1209–1215.
[22]
Fukuma G, Oguni H, Shirasaka Y, Watanabe K, Miyajima T, et al. (2004) Mutations of neuronal voltage-gated Na+ channel alpha 1 subunit gene SCN1A in core severe myoclonic epilepsy in infancy (SMEI) and in borderline SMEI (SMEB). Epilepsia 45: 140–148.
[23]
Scheffer IE, Turner SJ, Dibbens LM, Bayly MA, Friend K, et al. (2008) Epilepsy and mental retardation limited to females: an under-recognized disorder. Brain 131: 918–927.
[24]
Junghans D, Haas IG, Kemler R (2005) Mammalian cadherins and protocadherins: about cell death, synapses and processing. Curr Opin Cell Biol 17: 446–452.
[25]
Johnson WG (1980) Metabolic interference and the + - heterozygote. a hypothetical form of simple inheritance which is neither dominant nor recessive. Am J Hum Genet 32: 374–386.
[26]
Klein R (2004) Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol 16: 580–589.
[27]
Compagni A, Logan M, Klein R, Adams RH (2003) Control of skeletal patterning by ephrinB1-EphB interactions. Dev Cell 5: 217–230.
[28]
Gaitan Y, Bouchard M (2006) Expression of the delta-protocadherin gene Pcdh19 in the developing mouse embryo. Gene Expr Patterns 6: 893–899.
[29]
Wolverton T, Lalande M (2001) Identification and characterization of three members of a novel subclass of protocadherins. Genomics 76: 66–72.
[30]
Redies C, Vanhalst K, Roy F (2005) delta-Protocadherins: unique structures and functions. Cell Mol Life Sci 62: 2840–2852.
[31]
Ohmori I, Ouchida M, Ohtsuka Y, Oka E, Shimizu K (2002) Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy. Biochem Biophys Res Commun 295: 17–23.