There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD). The only known genetic risk factor is severe deficiency of α1-antitrypsin, which is present in 1–2% of individuals with COPD. We conducted a genome-wide association study (GWAS) in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls) and evaluated the top 100 single nucleotide polymorphisms (SNPs) in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees) study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT) and 472 controls from the Normative Aging Study (NAS) and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the α-nicotinic acetylcholine receptor (CHRNA 3/5) locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48×10?10, (rs8034191) and 5.74×10?10 (rs1051730). Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP) locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article in this issue of PLoS Genetics; doi:10.1371/journal.pgen.1000429). The CHRNA 3/5 and the HHIP loci make a significant contribution to the risk of COPD. CHRNA3/5 is the same locus that has been implicated in the risk of lung cancer.
References
[1]
Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 349: 1498–1504.
[2]
(1996) Cigarette smoking and health. American Thoracic Society. Am J Respir Crit Care Med 153: 861–865.
[3]
Burrows B, Knudson RJ, Cline MG, Lebowitz MD (1977) Quantitative relationships between cigarette smoking and ventilatory function. Am Rev Respir Dis 115: 195–205.
[4]
Kauffmann F, Tager IB, Munoz A, Speizer FE, Tager IB, Munoz A, et al. (1989) Familial factors related to lung function in children aged 6–10 years. Results from the PAARC epidemiologic study. Am J Epidemiol 129: 1289–1299.
[5]
Lebowitz MD, Knudson RJ, Burrows B, Knudson RJ, Burrows B, et al. (1984) Family aggregation of pulmonary function measurements. American Review of Respiratory Disease 129: 8–11.
[6]
Redline S, Tishler PV, Rosner B, Lewitter FI, Vandenburgh M, et al. (1989) Genotypic and phenotypic similarities in pulmonary function among family members of adult monozygotic and dizygotic twins. Am J Epidemiol 129: 827–836.
[7]
Webster PM, Lorimer EG, Man SF, Woolf CR, Zamel N, et al. (1979) Pulmonary function in identical twins: comparison of nonsmokers and smokers. American Review of Respiratory Disease 119: 223–228.
[8]
McCloskey SC, Patel BD, Hinchliffe SJ, Reid ED, Wareham NJ, et al. (2001) Siblings of Patients With Severe Chronic Obstructive Pulmonary Disease Have a Significant Risk of Airflow Obstruction. American Journal of Respiratory and Critical Care Medicine 164: 1419–1424.
[9]
Ganrot PO, Laurell CB, Eriksson S (1967) Obstructive lung disease and trypsin inhibitors in alpha-1-antitrypsin deficiency. Scand J Clin Lab Invest 19: 205–208.
[10]
Luzi P, Strayer DS (1995) DNA binding proteins that amplify surfactant protein B gene expression: isolation and characterization. Biochem Biophys Res Commun 208: 153–160.
[11]
Hawgood S (2004) Surfactant protein B: structure and function. Biol Neonate 85: 285–289.
[12]
Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, et al. (2008) Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 40: 616–622.
[13]
Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, et al. (2008) A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452: 633–637.
[14]
Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, et al. (2008) A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452: 638–642.
[15]
Berrettini W, Yuan X, Tozzi F, Song K, Francks C, et al. (2008) alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry (4): 368–73.
[16]
Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, et al. (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16: 36–49.
[17]
Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50: 279–290.
[18]
Wessler I, Kirkpatrick CJ, Racke K (1998) Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther 77: 59–79.
[19]
Pearson TA, Manolio TA (2008) How to Interpret a Genome-wide Association Study. JAMA 299: 1335–1344.
[20]
Cohen BH, Diamond EL, Graves CG, Kreiss P, Levy DA, et al. (1977) A common familial component in lung cancer and chronic obstructive pulmonary disease. Lancet 2: 523–526.
[21]
Zhu G, Warren L, Aponte J, Gulsvik A, Bakke P, et al. (2007) The SERPINE2 Gene is Associated with Chronic Obstructive Pulmonary Disease in Two Large Populations. Am J Respir Crit Care Med 200611-1723OC.
[22]
Pillai SG, Zhu G, Gulsvik A, Lomas DA, Silverman EK (2007) SERPINE2 and COPD. Am J Respir Crit Care Med 176: 726.
[23]
Patel BD, Coxson HO, Pillai SG, Agusti AG, Calverley PM, et al. (2008) Airway Wall Thickening and Emphysema Show Independent Familial Aggregation in COPD. Am J Respir Crit Care Med 200801-2059OC.
[24]
Fishman A, Martinez F, Naunheim K, Piantadosi S, Wise R, et al. (2003) A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med 348: 2059–2073.
[25]
Bell B, Rose CL, Damon A (1972) The Normative Aging Study: an interdisciplinary and longitudinal study of health and aging. Aging Hum Dev 3: 5–17.
[26]
Silverman EK, Chapman HA, Drazen JM, Weiss ST, Rosner B, et al. (1998) Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for airflow obstruction and chronic bronchitis. Am J Respir Crit Care Med 157: 1770–1778.
[27]
Lodrup Carlsen KC, Haland G, Devulapalli CS, Munthe-Kaas M, Pettersen M, et al. (2006) Asthma in every fifth child in Oslo, Norway: a 10-year follow up of a birth cohort study. Allergy 61: 454–460.
[28]
Koren-Michowitz M, Shimoni A, Vivante A, Trakhtenbrot L, Rechavi G, Amariglio N, et al. (2008) A new MALDI-TOF-based assay for monitoring JAK2 V617F mutation level in patients undergoing allogeneic stem cell transplantation (allo SCT) for classic myeloproliferative disorders (MPD). Leukemia Research 32: 421–427.
[29]
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38: 904–909.
[30]
Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM (2004) PBAT: tools for family-based association studies. Am J Hum Genet 74: 367–369.
[31]
Ge D, Zhang K, Need AC, Martin O, Fellay J, et al. (2008) WGAViewer: A Software for Genomic Annotation of Whole Genome Association Studies. Genome Res 18: 640–643.