The identification of recessive disease-causing genes by homozygosity mapping is often restricted by lack of suitable consanguineous families. To overcome these limitations, we apply homozygosity mapping to single affected individuals from outbred populations. In 72 individuals of 54 kindred ascertained worldwide with known homozygous mutations in 13 different recessive disease genes, we performed total genome homozygosity mapping using 250,000 SNP arrays. Likelihood ratio Z-scores (ZLR) were plotted across the genome to detect ZLR peaks that reflect segments of homozygosity by descent, which may harbor the mutated gene. In 93% of cases, the causative gene was positioned within a consistent ZLR peak of homozygosity. The number of peaks reflected the degree of inbreeding. We demonstrate that disease-causing homozygous mutations can be detected in single cases from outbred populations within a single ZLR peak of homozygosity as short as 2 Mb, containing an average of only 16 candidate genes. As many specialty clinics have access to cohorts of individuals from outbred populations, and as our approach will result in smaller genetic candidate regions, the new strategy of homozygosity mapping in single outbred individuals will strongly accelerate the discovery of novel recessive disease genes.
References
[1]
Boute N, Gribouval O, Roselli S, Benessy F, Lee H, et al. (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24: 349–354.
[2]
Ruf RG, Lichtenberger A, Karle SM, Haas JP, Anacleto FE, et al. (2004) Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol 15: 722–732.
[3]
Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, et al. (2007) Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119: e907–919.
[4]
Hinkes B, Vlangos C, Heeringa S, Mucha B, Gbadegesin R, et al. (2008) Specific podocin mutations correlate with age of onset in steroid-resistant nephrotic syndrome. J Am Soc Nephrol 19: 365–371.
[5]
Lander ES, Botstein D (1987) Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236: 1567–1570.
[6]
Ropers HH (2007) New perspectives for the elucidation of genetic disorders. Am J Hum Genet 81: 199–207.
[7]
Hildebrandt F, Zhou W (2007) Nephronophthisis-associated ciliopathies. J Am Soc Nephrol 18: 1855–1871.
[8]
ISKDC (1981) Primary nephrotic syndrome in children: Clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity: A Report of the International Study of Kidney Disease in Children. Kidney Internat 20: 765–771.
[9]
Zeiger JS, Hetmanski JB, Beaty TH, VanderKolk CA, Wyszynski DF, et al. (2003) Evidence for linkage of nonsyndromic cleft lip with or without cleft palate to a region on chromosome 2. Eur J Hum Genet 11: 835–839.
[10]
Strauch K (2003) Parametric linkage analysis with automatic optimization of the disease model parameters. Am J Hum Genet 73: A2624.
[11]
Kong A, Cox NJ (1997) Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 61: 1179–1188.
[12]
Gudbjartsson DF, Jonasson K, Frigge ML, Kong A (2000) Allegro, a new computer program for multipoint linkage analysis. Nat Genet 25: 12–13.
[13]
Ruschendorf F, Nurnberg P (2005) ALOHOMORA: a tool for linkage analysis using 10 K SNP array data. Bioinformatics 21: 2123–2125.
[14]
Hildebrandt F, Otto E (2005) Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 6: 928–940.
[15]
Konrad M, Saunier S, Heidet L, Silbermann F, Benessy F, et al. (1996) Large homozygous deletions of the 2q13 region are a major cause of juvenile nephronophthisis. Hum Mol Genet 5: 367–371.
[16]
Omran H, Fernandez C, Jung M, Haffner K, Fargier B, et al. (2000) Identification of a new gene locus for adolescent nephronophthisis, on chromosome 3q22 in a large Venezuelan pedigree. Am J Hum Genet 66: 118–127.
[17]
Otto E, Loeys B, Khanna H, Hellemans J, Sudbrak R, Fan S, Muerb U, O'Toole JF, Helou J, Attanasio M, Utsch B, Sayer JA, Lillo C, Jimeno D, Coucke P, De Paepe A, Reinhardt R, Klages S, Tsuda M, Kawakami I, Kusakabe T, Omran H, Imm A, Tippens M, Raymond PA, Hill J, Beales P, He S, Kispert A, Margolis B, Williams DS, Swaroop A, Hildebrandt F (2005) A novel ciliary IQ domain protein, NPHP5, is mutated in Senior-Loken syndrome (nephronophthisis with retinitis pigmentosa), and interacts with RPGR and calmodulin. Nat Genet.
[18]
Sayer JA, Otto EA, O'Toole JF, Nurnberg G, Kennedy MA, et al. (2006) The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 38: 674–681.
[19]
Olbrich H, Fliegauf M, Hoefele J, Kispert A, Otto E, et al. (2003) Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet 34: 455–459.
[20]
Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, et al. (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29: 310–314.
[21]
Otto E, Hoefele J, Ruf R, Mueller AM, Hiller KS, et al. (2002) A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am J Hum Genet 71: 1167–1171.
[22]
Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, et al. (2006) Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 38: 1397–1405.
[23]
Hoglund P, Sistonen P, Norio R, Holmberg C, Dimberg A, et al. (1995) Fine mapping of the congenital chloride diarrhea gene by linkage disequilibrium. Am J Hum Genet 57: 95–102.
[24]
Gbadegesin R, Hinkes BG, Hoskins BE, Vlangos CN, Heeringa SF, et al. (2008) Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant 23: 1291–1297.
[25]
McQuillan R, Leutenegger AL, Abdel-Rahman R, Franklin CS, Pericic M, et al. (2008) Runs of homozygosity in European populations. Am J Hum Genet 83: 359–372.
[26]
Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, et al. (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39: 1522–1527.