全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2009 

Adaptations to Submarine Hydrothermal Environments Exemplified by the Genome of Nautilia profundicola

DOI: 10.1371/journal.pgen.1000362

Full-Text   Cite this paper   Add to My Lib

Abstract:

Submarine hydrothermal vents are model systems for the Archaean Earth environment, and some sites maintain conditions that may have favored the formation and evolution of cellular life. Vents are typified by rapid fluctuations in temperature and redox potential that impose a strong selective pressure on resident microbial communities. Nautilia profundicola strain Am-H is a moderately thermophilic, deeply-branching Epsilonproteobacterium found free-living at hydrothermal vents and is a member of the microbial mass on the dorsal surface of vent polychaete, Alvinella pompejana. Analysis of the 1.7-Mbp genome of N. profundicola uncovered adaptations to the vent environment—some unique and some shared with other Epsilonproteobacterial genomes. The major findings included: (1) a diverse suite of hydrogenases coupled to a relatively simple electron transport chain, (2) numerous stress response systems, (3) a novel predicted nitrate assimilation pathway with hydroxylamine as a key intermediate, and (4) a gene (rgy) encoding the hallmark protein for hyperthermophilic growth, reverse gyrase. Additional experiments indicated that expression of rgy in strain Am-H was induced over 100-fold with a 20°C increase above the optimal growth temperature of this bacterium and that closely related rgy genes are present and expressed in bacterial communities residing in geographically distinct thermophilic environments. N. profundicola, therefore, is a model Epsilonproteobacterium that contains all the genes necessary for life in the extreme conditions widely believed to reflect those in the Archaean biosphere—anaerobic, sulfur, H2- and CO2-rich, with fluctuating redox potentials and temperatures. In addition, reverse gyrase appears to be an important and common adaptation for mesophiles and moderate thermophiles that inhabit ecological niches characterized by rapid and frequent temperature fluctuations and, as such, can no longer be considered a unique feature of hyperthermophiles.

References

[1]  Lowell RP, Rona PA, Vonherzen RP (1995) Sea-floor hydrothermal systems. J Geophys Res-Sol Ea 100: 327–352.
[2]  Luther GW, Rozan TF, Taillefert M, Nuzzio DB, Di Meo C, et al. (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410: 813–816.
[3]  Von Damm KL (1995) Controls of the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE, editors. Seafloor hydrothermal systems: Physical, chemical, biological, and geological interactions. Washington, D.C.: American Geophysical Union. pp. 222–247.
[4]  Scheirer DS, Shank TM, Fornari DJ (2006) Temperature variations at diffuse and focused flow hydrothermal vent sites along the northern East Pacific Rise. Geochem Geoph Geosy 7: Q03002. doi:10.1029/2005GC001094.
[5]  Kadko D (1996) Radioisotopic studies of submarine hydrothermal vents. Rev Geophys 34: 349–366.
[6]  La Duc MT, Benardini JN, Kempf MJ, Newcombe DA, Lubarsky M, et al. (2007) Microbial diversity of Indian Ocean hydrothermal vent plumes: Microbes tolerant of desiccation, peroxide exposure, and ultraviolet and gamma-irradiation. Astrobiology 7: 416–431.
[7]  Jolivet E, L'Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Micr 53: 847–851.
[8]  Cherry R, Desbruyeres D, Heyraud M, Nolan C (1992) High levels of natural radioactivity in hydrothermal vent polychaetes. CR Acad Sci III 315: 21–26.
[9]  Miroshnichenko ML (2004) Thermophilic microbial communities of deep-sea hydrothermal vents. Microbiology 73: 1–13.
[10]  Reysenbach AL, Cady SL (2001) Microbiology of ancient and modern hydrothermal systems. Trends Microbiol 9: 79–86.
[11]  Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4: 458–468.
[12]  Huber JA, Welch DBM, Morrison HG, Huse SM, Neal PR, et al. (2007) Microbial population structures in the deep marine biosphere. Science 318: 97–100.
[13]  Huber JA, Butterfield DA, Baross JA (2003) Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 43: 393–409.
[14]  Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, et al. (2003) Isolation and phylogenetic diversity of members of previously uncultivated epsilon-proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218: 167–174.
[15]  Reysenbach AL, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microb 66: 3798–3806.
[16]  Longnecker K, Reysenbach AL (2001) Expansion of the geographic distribution of a novel lineage of epsilon-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol Ecol 35: 287–293.
[17]  Corre E, Reysenbach AL, Prieur D (2001) Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205: 329–335.
[18]  Nakagawa S, Takaki Y, Shimamura S, Reysenbach AL, Takai K, et al. (2007) Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. P Natl Acad Sci USA 104: 12146–12150.
[19]  Voordeckers JW, Starovoytov V, Vetriani C (2005) Caminibacter mediatlanticus sp nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Micr 55: 773–779.
[20]  Campbell BJ, Jeanthon C, Kostka JE, Luther GW, Cary SC (2001) Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microb 67: 4566–4572.
[21]  Smith JL, Campbell BJ, Hanson TE, Zhang CL, Cary SC (2008) Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. Int J Syst Evol Micr 58: 1598–1602.
[22]  Alain K, Querellou J, Lesongeur F, Pignet P, Crassous P, et al. (2002) Caminibacter hydrogeniphilus gen. nov., sp nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Micr 52: 1317–1323.
[23]  Miroshnichenko ML, Kostrikina NA, L'Haridon S, Jeanthon C, Hippe H, et al. (2002) Nautilia lithotrophica gen. nov., sp nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Micr 52: 1299–1304.
[24]  Miroshnichenko ML, L'Haridon S, Schumann P, Spring S, Bonch-Osmolovskaya EA, et al. (2004) Caminibacter profundus sp nov., a novel thermophile of Nautiliales ord. nov within the class ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Micr 54: 41–45.
[25]  Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH, et al. (2005) Lebetimonas acidiphila gen. nov., sp nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the Epsilonproteobacteria, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Micr 55: 183–189.
[26]  Campbell BJ, Stein JL, Cary SC (2003) Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl Environ Microb 69: 5070–5078.
[27]  Scott KM, Sievert SM, Abril FN, Ball LA, Barrett CJ, et al. (2006) The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2. PloS Biol 4: 2196–2212.
[28]  Jannasch HW, Wirsen CO, Nelson DC, Robertson LA (1985) Thiomicrospira crunogena sp. nov, a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Micr 35: 422–424.
[29]  Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, et al. (2005) Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7: 1619–1632.
[30]  Kern M, Mager AM, Simon J (2007) Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes. Microbiol Sgm 153: 3739–3747.
[31]  Sievert SM, Scott KM, Klotz MG, Chain PSG, Hauser LJ, et al. (2008) Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans. Appl Environ Microb 74: 1145–1156.
[32]  Eppinger M, Baar C, Raddatz G, Huson DH, Schuster SC (2004) Comparative analysis of four Campylobacterales. Nat Rev Microbiol 2: 872–885.
[33]  Kang J, Blaser MJ (2006) Bacterial populations as perfect gases: genomic integrity and diversification tensions in Helicobacter pylori. Nat Rev Microbiol 4: 826–836.
[34]  Lobry JR (1996) A simple vectorial representation of DNA sequences for the detection of replication origins in bacteria. Biochimie 78: 323–326.
[35]  Zhang Y, Romero H, Salinas G, Gladyshev VN (2006) Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Genome Biol 7: R94.
[36]  Hayes F (2003) Toxins-antitoxins: Plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301: 1496–1499.
[37]  Pandey DP, Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33: 966–976.
[38]  Bose M, Barber RD (2006) Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biology 6: 223–227.
[39]  Galperin MY (2004) Bacterial signal transduction network in a genomic perspective. Environ Microbiol 6: 552–567.
[40]  Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40: 385–407.
[41]  Zhulin IB, Taylor BL, Dixon R (1997) PAS domain S-boxes in archaea, bacteria and sensors for oxygen and redox. Trends Biochem Sci 22: 331–333.
[42]  Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signaling system. Molecular Microbiol 57: 629–639.
[43]  Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4: 249–258.
[44]  Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR (2005) Making ‘sense’ of metabolism: autoinducer-2, LUXS and pathogenic bacteria. Nat Rev Microbiol 3: 383–396.
[45]  Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Current Opinion Microbiol 6: 191–197.
[46]  Grzymski JJ, Murray AE, Campbell BJ, Kaplarevic M, Gao G, et al. (2008) Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility. P Natl Acad Sci USA 105: 17516–17521.
[47]  Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10: 365–370.
[48]  Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, et al. (2006) Polyamines are essential for the formation of plague biofilm. J Bacteriol 188: 2355–2363.
[49]  Doig P, de Jonge BL, Alm RA, Brown ED, Uria-Nickelsen M, et al. (1999) Helicobacter pylori physiology predicted from genomic comparison of two strains. Microbiol Mol Biol R 63: 675–707.
[50]  Karatan E, Duncan TR, Watnick PI (2005) NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 187: 7434–7443.
[51]  Bomchil N, Watnick P, Kolter R (2003) Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J Bacteriol 185: 1384–1390.
[52]  Niba ET, Naka Y, Nagase M, Mori H, Kitakawa M (2007) A Genome-wide approach to identify the genes involved in biofilm formation in E. coli. DNA Res 14: 237–246.
[53]  Reeser RJ, Medler RT, Billington SJ, Jost BH, Joens LA (2007) Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl Environ Microb 73: 1908–1913.
[54]  Joshua GW, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152: 387–396.
[55]  Kalmokoff M, Lanthier P, Tremblay TL, Foss M, Lau PC, et al. (2006) Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188: 4312–4320.
[56]  Bessman MJ, Frick DN, Ohandley SF (1996) The MutT proteins or “nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271: 25059–25062.
[57]  Miller WG, Parker CT, Rubenfield M, Mendz GL, Wosten MM, et al. (2007) The complete genome sequence and analysis of the epsilonproteobacterium Arcobacter butzleri. PLoS ONE 2: e1358.
[58]  McLennan AG (2006) The Nudix hydrolase superfamily. Cell Mol Life Sci 63: 123–143.
[59]  Gabelli SB, Bianchet MA, Ohnishi Y, Ichikawa Y, Bessman MJ, et al. (2002) Mechanism of the Escherichia coli ADP-ribose pyrophosphatase, a nudix hydrolase. Biochemistry 41: 9279–9285.
[60]  Dunn CA, O'Handley SF, Frick DN, Bessman MJ (1999) Studies on the ADP-ribose pyrophosphatase subfamily of the Nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem 274: 32318–32324.
[61]  Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microb 71: 599–608.
[62]  Seaver LC, Imlay JA (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183: 7173–7181.
[63]  Sherrill C, Fahey RC (1998) Import and metabolism of glutathione by Streptococcus mutans. J Bacteriol 180: 1454–1459.
[64]  Hummel CS, Lancaster KM, Crane EJ 3rd (2005) Determination of coenzyme A levels in Pyrococcus furiosus and other Archaea: implications for a general role for coenzyme A in thermophiles. FEMS Microbiol Lett 252: 229–234.
[65]  Harris DR, Ward DE, Feasel JM, Lancaster KM, Murphy RD, et al. (2005) Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles. FEBS J 272: 1189–1200.
[66]  Schut GJ, Bridger SL, Adams MW (2007) Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A- dependent NAD(P)H sulfur oxidoreductase. J Bacteriol 189: 4431–4441.
[67]  Mussmann M, Hu FZ, Richter M, de Beer D, Preisler A, et al. (2007) Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PloS Biol 5: 1923–1937.
[68]  Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, et al. (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. P Natl Acad Sci USA 99: 9509–9514.
[69]  Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, et al. (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392: 353–358.
[70]  Mulligan C, Kelly DJ, Thomas GH (2007) Tripartite ATP-independent periplasmic transporters: Application of a relational database for genome-wide analysis of transporter gene frequency and organization. J Mol Microb Biotech 12: 218–226.
[71]  Auman AJ, Breezee JL, Gosink JJ, Kampfer P, Staley JT (2006) Psychromonas ingrahamii sp nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Micr 56: 1001–1007.
[72]  Krafft T, Gross R, Kroger A (1995) The function of Wolinella succinogenes psr genes in electron transport with polysulphide as the terminal electron acceptor. Eur J Biochem 230: 601–606.
[73]  Ma K, Schicho RN, Kelly RM, Adams MW (1993) Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. P Natl Acad Sci USA 90: 5341–5344.
[74]  Ma K, Weiss R, Adams MW (2000) Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J Bacteriol 182: 1864–1871.
[75]  Childers SE, Noll KM (1994) Characterization and regulation of sulfur reductase activity in Thermotoga neapolitana. Appl Environ Microb 60: 2622–2626.
[76]  Klimmek O, Kreis V, Klein C, Simon J, Wittershagen A, et al. (1998) The function of the periplasmic Sud protein in polysulfide respiration of Wolinella succinogenes. Eur J Biochem 253: 263–269.
[77]  Thomas GH, Mullins JGL, Merrick M (2000) Membrane topology of the Mep/Amt family of ammonium transporters. Mol Microbiol 37: 331–344.
[78]  Klotz MG, Stein LY (2008) Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol Lett 278: 146–156.
[79]  Cabello P, Pino C, Olmo-Mira MF, Castillo F, Roldan MD, et al. (2004) Hydroxylamine assimilation by Rhodobacter capsulatus E1F1 - Requirement of the hcp gene (hybrid cluster protein) located in the nitrate assimilation nas gene region for hydroxylamine reduction. J Biol Chem 279: 45485–45494.
[80]  Bergmann DJ, Hooper AB, Klotz MG (2005) Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: Evidence for their evolutionary history. Appl Environ Microb 71: 5371–5382.
[81]  Klotz MG, Schmid MC, Strous M, Op den Camp HJM, M.S.M. J (2008) Evolution of an octaheme cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Environ Microbiol 10: 3150–3163.
[82]  Poret-Peterson AT, Graham JE, Gulledge J, Klotz MG (2008) Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath. ISME J 2: 1213–1220.
[83]  Kostera J, Youngblut MD, Slosarczyk JM, Pacheco AA (2008) Kinetic and product distribution analysis of NO center dot reductase activity in Nitrosomonas europaea hydroxylamine oxidoreductase. J Biol Inorg Chem 13: 1073–1083.
[84]  Lindsay MR, Webb RI, Strous M, Jetten MS, Butler MK, et al. (2001) Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175: 413–429.
[85]  Schmidt I, Look C, Bock E, Jetten MS (2004) Ammonium and hydroxylamine uptake and accumulation in Nitrosomonas. Microbiology 150: 1405–1412.
[86]  Rodionov DA, Dubchak IL, Arkin AP, Alm EJ, Gelfand MS (2005) Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PloS Comput Biol 1: e55.
[87]  Klotz MG, Arp DJ, Chain PSG, El-Sheikh AF, Hauser LJ, et al. (2006) Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707. Appl Environ Microb 72: 6299–6315.
[88]  Valente FAA, Almeida CC, Pacheco I, Carita J, Saraiva LM, et al. (2006) Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol 188: 3228–3235.
[89]  Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, et al. (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22: 554–559.
[90]  Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, et al. (2006) The Methanosarcina barkeri genome: Comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188: 7922–7931.
[91]  Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, et al. (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22: 55–61.
[92]  Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, et al. (2002) The genome of Methanosarcina mazei: Evidence for lateral gene transfer between bacteria and archaea. J Mol Microb Biotech 4: 453–461.
[93]  Wu M, Ren QH, Durkin AS, Daugherty SC, Brinkac LM, et al. (2005) Life in hot carbon monoxide: The complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PloS Genetics 1: 563–574.
[94]  Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. P Natl Acad Sci USA 99: 5632–5637.
[95]  Brugna-Guiral M, Tron P, Nitschke W, Stetter KO, Burlat B, et al. (2003) [NiFe] hydrogenases from the hyperthermophilic bacterium Aquifex aeolicus: properties, function, and phylogenetics. Extremophiles 7: 145–157.
[96]  Kerby RL, Hong SS, Ensign SA, Coppoc LJ, Ludden PW, et al. (1992) Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J Bacteriol 174: 5284–5294.
[97]  Bruggemann H, Baumer S, Fricke WF, Wiezer A, Liesegang H, et al. (2003) The genome sequence of Clostridium tetani, the causative agent of tetanus disease. P Natl Acad Sci USA 100: 1316–1321.
[98]  Mijts BN, Patel BKC (2001) Random sequence analysis of genomic DNA of an anaerobic, thermophilic, halophilic bacterium, Halothermothrix orenii. Extremophiles 5: 61–69.
[99]  Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, et al. (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Gen Res 15: 352–363.
[100]  Arp DJ, Chain PSG, Klotz MG (2007) The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol 61: 503–528.
[101]  Barnes MH, Leo CJ, Brown NC (1998) DNA polymerase III of Gram-positive eubacteria is a zinc metalloprotein conserving an essential finger-like domain. Biochemistry 37: 15254–15260.
[102]  Wieczorek A, McHenry CS (2006) The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit. J Biol Chem 281: 12561–12567.
[103]  Rebeil R, Sun YB, Chooback L, Pedraza-Reyes M, Kinsland C, et al. (1998) Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases. J Bacteriol 180: 4879–4885.
[104]  White SN, Chave AD, Reynolds GT (2002) Investigations of ambient light emission at deep-sea hydrothermal vents. J Geophysi Res-SE 107: B1.
[105]  Lombardot T, Kottmann R, Giuliani G, de Bono A, Addor N, et al. (2007) MetaLook: a 3D visualisation software for marine ecological genomics. BMC Bioinformatics 8: 406.
[106]  Hou S, Saw JH, Lee KS, Freitas TA, Belisle C, et al. (2004) Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. P Natl Acad Sci USA 101: 18036–18041.
[107]  Jolivet E, Corre E, L'Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8: 219–227.
[108]  Company R, Serafim A, Cosson RP, Fiala-Medioni A, Camus L, et al. (2008) Antioxidant biochemical responses to long-term copper exposure in Bathymodiolus azoricus from Menez-Gwen hydrothermal vent. Sci Total Environ 389: 407–417.
[109]  Rodriguez H, Drouin R, Holmquist GP, Oconnor TR, Boiteux S, et al. (1995) Mapping of copper hydrogen peroxideiInduced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated Polymerase Chain Reaction. J Biol Chem 270: 17633–17640.
[110]  Daley JM, Vander Laan RL, Suresh A, Wilson TE (2005) DNA joint dependence of Pol X family polymerase action in nonhomologous end joining. J Biol Chem 280: 29030–29037.
[111]  Weller GR, Kysela B, Roy R, Tonkin LM, Scanlan E, et al. (2002) Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297: 1686–1689.
[112]  Shuman S, Glickman MS (2007) Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5: 852–861.
[113]  Kampmann M, Stock D (2004) Reverse gyrase has heat-protective DNA chaperone activity independent of supercoiling. Nucleic Acids Res 32: 3537–3545.
[114]  Hsieh TS, Capp C (2005) Nucleotide- and stoichiometry-dependent DNA supercoiling by reverse gyrase. J Biol Chem 280: 20467–20475.
[115]  Kikuchi A, Asai K (1984) Reverse gyrase-a topoisomerase which introduces positive superhelical turns into DNA. Nature 309: 677–681.
[116]  LaMarr WA, Yu L, Nicolaou KC, Dedon PC (1998) Supercoiling affects the accessibility of glutathione to DNA-bound molecules: Positive supercoiling inhibits calicheamicin-induced DNA damage. P Natl Acad Sci USA 95: 102–107.
[117]  Brochier-Armanet C, Forterre P (2007) Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers. Archaea 2: 83–93.
[118]  Atomi H, Matsumi R, Imanaka T (2004) Reverse gyrase is not a prerequisite for hyperthermophilic life. J Bacteriol 186: 4829–4833.
[119]  McClendon JH (1999) The origin of life. Earth-Science Rev 47: 71–93.
[120]  Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos T Roy Soc B 358: 59–83.
[121]  Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al. (1992) Current protocols in molecular biology. New York: Greene Publishing Associates and Wiley-Interscience.
[122]  Nierman WC, DeShazer D, Kim H, Tettelin H, Nelson KE, et al. (2004) Structural flexibility in the Burkholderia mallei genome. 2004. Proc Natl Acad Sci USA 101: 14246–14251.
[123]  Cline J (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology Oceanogr 14: 454–458.
[124]  Markowitz VM, Szeto E, Palaniappan K, Grechkin Y, Chu K, et al. (2008) The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res 36: D528–D533.
[125]  Altschul S, Madden T, Schaffer A, Zhang JH, Zhang Z, et al. (1998) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. FASEB J 12: A1326–A1326.
[126]  Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2006) GenBank. Nucleic Acids Res 34: D16–D20.
[127]  Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9: 75.
[128]  Field D, Garrity G, Gray T, Morrison N, Selengut J, et al. (2008) The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26: 541–547.
[129]  Haas BJ, Delcher AL, Wortman JR, Salzberg SL (2004) DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20: 3643–3646.
[130]  Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
[131]  Dempster EL, Pryor KV, Francis D, Young JE, Rogers HJ (1999) Rapid DNA extraction from ferns for PCR-based analyses. Biotechniques 27: 66–68.
[132]  Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microb 66: 4605–4614.
[133]  Campbell BJ, Waidner LA, Cottrell MT, Kirchman DL (2008) Abundant proteorhodopsin genes in the North Atlantic Ocean. Environ Microbiol 10: 99–109.
[134]  De la Tour CB, Portemer C, Kaltoum H, Duguet M (1998) Reverse gyrase from the hyperthermophilic bacterium Thermotoga maritima: Properties and gene structure. J Bacteriol 180: 274–281.
[135]  Igarashi N, Moriyama H, Fujiwara T, Fukumori Y, Tanaka N (1997) The 2.8 angstrom structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea. Nature Struct Biol 4: 276–284.
[136]  Bergmann DJ, Hooper AB, Klotz MG (2005) Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: Evidence for their evolutionary history. Appl Environ Microb 71: 5371–5382.
[137]  Field D, Garrity G, Gray T, Morrison N, Selengut J, et al. (2008) The minimum information about a genome sequence (MIGS) specification. Nature Biotech 26: 541–547.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133