Prion diseases are fatal transmissible neurodegenerative disorders, which include Scrapie, Bovine Spongiform Encephalopathy (BSE), Creutzfeldt-Jakob Disease (CJD), and kuru. They are characterised by a prolonged clinically silent incubation period, variation in which is determined by many factors, including genetic background. We have used a heterogeneous stock of mice to identify Hectd2, an E3 ubiquitin ligase, as a quantitative trait gene for prion disease incubation time in mice. Further, we report an association between HECTD2 haplotypes and susceptibility to the acquired human prion diseases, vCJD and kuru. We report a genotype-associated differential expression of Hectd2 mRNA in mouse brains and human lymphocytes and a significant up-regulation of transcript in mice at the terminal stage of prion disease. Although the substrate of HECTD2 is unknown, these data highlight the importance of proteosome-directed protein degradation in neurodegeneration. This is the first demonstration of a mouse quantitative trait gene that also influences susceptibility to human prion diseases. Characterisation of such genes is key to understanding human risk and the molecular basis of incubation periods.
Collinge J, Whitfield J, McKintosh E, Beck J, Mead S, et al. (2006) Kuru in the 21st century–an acquired human prion disease with very long incubation periods. Lancet 367: 2068–2074.
[3]
Collinge J, Whitfield J, McKintosh E, Frosh A, Mead S, et al. (2008) A clinical study of kuru patients with long incubation periods at the end of the epidemic in Papua New Guinea. Philos Trans R Soc Lond B Biol Sci 363: 3725–3739.
[4]
Carlson GA, Westaway D, Prusiner SB (1992) The Genetics of Prion Susceptibility in the Mouse. In: Prusiner SB, Collinge J, Powell J, Anderton B, editors. Prion Diseases in Humans and Animals. London: Ellis Horwood.
[5]
Lloyd S, Collinge J (2005) Genetic Susceptibility to Prion Diseases in Humans and Mice. Current Genomics 6: 1–11.
[6]
Lloyd S, Onwuazor ON, Beck J, Mallinson G, Farrall M, et al. (2001) Identification of multiple quantitative trait loci linked to prion disease incubation period in mice. Proc Natl Acad Sci USA 98: 6279–6283.
[7]
Lloyd S, Uphill JB, Targonski PV, Fisher E, Collinge J (2002) Identification of genetic loci affecting mouse-adapted bovine spongiform encephalopathy incubation time in mice. Neurogenetics 4: 77–81.
[8]
Stephenson DA, Chiotti K, Ebeling C, Groth D, DeArmond SJ, et al. (2000) Quantitative trait loci affecting prion incubation time in mice. Genomics 69: 47–53.
[9]
Manolakou K, Beaton J, McConnell I, Farquar C, Manson J, et al. (2001) Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice. Proc Natl Acad Sci U S A 98: 7402–7407.
[10]
Moreno CR, Lantier F, Lantier I, Sarradin P, Elsen JM (2003) Detection of new quantitative trait loci for susceptibility to transmissible spongiform encephalopathies in mice. Genetics 165: 2085–2091.
[11]
Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, et al. (2003) The nature and identification of quantitative trait loci: a community's view. Nat Rev Genet 4: 911–916.
[12]
Darvasi A (2005) Dissecting complex traits: the geneticists' - 'Around the world in 80 days'. Trends Genet 21: 373–376.
[13]
Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6: 271–286.
[14]
Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, et al. (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38: 879–887.
[15]
Talbot CJ, Nicod A, Cherny SS, Fulker DW, Collins AC, et al. (1999) High-resolution mapping of quantitative trait loci in outbred mice. Nat Genet 21: 305–308.
[16]
Hitzemann B, Dains K, Kanes S, Hitzemann R (1994) Further-Studies on the Relationship Between Dopamine Cell-Density and Haloperidol-Induced Catalepsy. J Pharm Exp Therap 271: 969–976.
[17]
Carlson GA, Kingsbury DT, Goodman PA, Coleman S, Marshall ST, et al. (1986) Linkage of prion protein and scrapie incubation time genes. Cell 46: 503–511.
[18]
Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A 97: 12649–12654.
[19]
Yalcin B, Flint J, Mott R (2005) Using progenitor strain information to identify quantitative trait nucleotides in outbred mice. Genetics 171: 673–681.
[20]
Kingsbury DT, Kasper KC, Stites DP, Watson JD, Hogan RN, et al. (1983) Genetic control of scrapie and Creutzfeldt-Jakob disease in mice. J Immunol 131: 491–496.
[21]
Westaway D, Goodman PA, Mirenda CA, McKinley MP, Carlson GA, et al. (1987) Distinct prion proteins in short and long scrapie incubation period mice. Cell 51: 651–662.
[22]
Carlson GA, DeArmond SJ, Torchia M, Westaway D, Prusiner SB (1994) Genetics of prion diseases and prion diversity in mice. Philos Trans R Soc Lond [Biol ] 343: 363–369.
[23]
Mead S, Stumpf MP, Whitfield J, Beck J, Poulter M, et al. (2003) Balancing selection at the prion protein gene consistent with prehistoric kuru-like epidemics. Science 300: 640–643.
[24]
The International HapMap Project (2003) Nature 426: 789–796.
[25]
Wadsworth JD, Joiner S, Linehan JM, Asante EA, Brandner S, et al. (2008) Review. The origin of the prion agent of kuru: molecular and biological strain typing. Philos Trans R Soc Lond B Biol Sci 363: 3747–3753.
[26]
Wadsworth JD, Joiner S, Linehan JM, Desbruslais M, Fox K, et al. (2008) Kuru prions and sporadic Creutzfeldt-Jakob disease prions have equivalent transmission properties in transgenic and wild-type mice. Proc Natl Acad Sci U S A 105: 3885–3890.
[27]
Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases. Sometimes the chicken, sometimes the egg. Neuron 40: 427–446.
[28]
Lim KL (2007) Ubiquitin-proteasome system dysfunction in Parkinson's disease: current evidence and controversies. Expert Rev Proeomics 4: 769–781.
[29]
Hegde AN, Upadhya SC (2007) The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci 30: 587–595.
[30]
He L, Lu XY, Jolly AF, Eldridge AG, Watson SJ, et al. (2003) Spongiform degeneration in mahoganoid mutant mice. Science 299: 710–712.
[31]
Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, et al. (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25: 302–305.
[32]
Cummings CJ, Reinstein E, Sun YL, Antalffy B, Jiang YH, et al. (1999) Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24: 879–892.
[33]
Bertram L, Blacker D, Mullin K, Keeney D, Jones J, et al. (2000) Evidence for genetic linkage of Alzheimer's disease to chromosome 10q. Science 290: 2302.
[34]
Kristiansen M, Messenger MJ, Klohn P, Brandner S, Wadsworth JD, et al. (2005) Disease-related prion protein forms aggresomes in neuronal cells leading to caspase-activation and apoptosis. J Biol Chem 280: 38851–38861.
[35]
Goldberg AL (2007) On prions, proteasomes, and mad cows. N Engl J Med 357: 1150–1152.
[36]
Poser S, Mollenhauer B, Krauss A, Zerr I, Steinhoff BJ, et al. (1999) How to improve the clinical diagnosis of Creutzfeldt-Jakob disease. Brain 122: 2345–2351.
[37]
Collinge J (2008) Review. Lessons of kuru research: background to recent studies with some personal reflections. Philos Trans R Soc Lond B Biol Sci 363: 3689–3696.
[38]
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38: 904–909.