全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2009 

Germline Mutation in NLRP2 (NALP2) in a Familial Imprinting Disorder (Beckwith-Wiedemann Syndrome)

DOI: 10.1371/journal.pgen.1000423

Full-Text   Cite this paper   Add to My Lib

Abstract:

Beckwith-Wiedemann syndrome (BWS) is a fetal overgrowth and human imprinting disorder resulting from the deregulation of a number of genes, including IGF2 and CDKN1C, in the imprinted gene cluster on chromosome 11p15.5. Most cases are sporadic and result from epimutations at either of the two 11p15.5 imprinting centres (IC1 and IC2). However, rare familial cases may be associated with germline 11p15.5 deletions causing abnormal imprinting in cis. We report a family with BWS and an IC2 epimutation in which affected siblings had inherited different parental 11p15.5 alleles excluding an in cis mechanism. Using a positional-candidate gene approach, we found that the mother was homozygous for a frameshift mutation in exon 6 of NLRP2. While germline mutations in NLRP7 have previously been associated with familial hydatidiform mole, this is the first description of NLRP2 mutation in human disease and the first report of a trans mechanism for disordered imprinting in BWS. These observations are consistent with the hypothesis that NLRP2 has a previously unrecognised role in establishing or maintaining genomic imprinting in humans.

References

[1]  Charalambous M, da Rocha ST, Ferguson-Smith AC (2007) Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life. Curr Opin Endocrinol Diabetes Obes 14: 3–12.
[2]  Maher ER, Reik W (2000) Beckwith-Wiedemann syndrome: imprinting in clusters revisited. J Clin Invest 105: 247–252.
[3]  Grandjean V, Smith J, Schofield PN, Ferguson-Smith AC (2000) Increased IGF-II protein affects p57kip2 expression in vivo and in vitro: implications for Beckwith-Wiedemann syndrome. Proc Natl Acad Sci U S A 97: 5279–5284.
[4]  Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, et al. (2005) Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur J Hum Genet 13: 1025–1032.
[5]  Han L, Lee DH, Szabó PE (2008) CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region. Mol Cell Biol 28: 1124–1135.
[6]  Reik W, Brown KW, Schneid H, Le Bouc Y, Bickmore W, et al. (1995) Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet 4: 2379–2385.
[7]  Lee MP, DeBaun MR, Mitsuya K, Galonek HL, Brandenburg S, et al. (1999) Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci U S A 96: 5203–5208.
[8]  Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC, et al. (1999) A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci U S A 96: 8064–8069.
[9]  Diaz-Meyer N, Day CD, Khatod K, Maher ER, Cooper W, et al. (2003) Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith-Wiedemann syndrome. J Med Genet 40: 797–801.
[10]  Niemitz EL, DeBaun MR, Fallon J, Murakami K, Kugoh H, et al. (2004) Microdeletion of LIT1 in familial Beckwith-Wiedemann syndrome. Am J Hum Genet 75: 844–849.
[11]  Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, et al. (2003) Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet 40: 62–64.
[12]  DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72: 156–160.
[13]  Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, et al. (2003) In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 72: 1338–1341.
[14]  Lim D, Bowdin SC, Tee L, Kirby GA, Blair E, et al. (2008) Clinical and Molecular Genetic Features of Beckwith-Wiedemann Syndrome associated with Assisted Reproductive Technologies. Hum Reprod In press.
[15]  Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, et al. (2008) Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 40: 949–951.
[16]  Scott RH, Douglas J, Baskcomb L, Nygren AO, Birch JM, et al. (2008) Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) robustly detects and distinguishes 11p15 abnormalities associated with overgrowth and growth retardation. J Med Genet 45: 106–113.
[17]  Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, et al. (2006) Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 38: 300–302.
[18]  Djuric U, El-Maarri O, Lamb B, Kuick R, Seoud M, et al. (2006) Familial molar tissues due to mutations in the inflammatory gene, NALP7, have normal postzygotic DNA methylation. Hum Genet 120: 390–395.
[19]  Kou YC, Shao L, Peng HH, Rosetta R, del Gaudio D, et al. (2008) A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol Hum Reprod 14: 33–40.
[20]  Rossignol S, Steunou V, Chalas C, Kerjean A, Rigolet M, et al. (2006) The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet 43: 902–907.
[21]  Li X, Ito M, Zhou F, Youngson N, Zuo X, et al. (2008) A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 15: 547–557.
[22]  Drenth JP, van der Meer JW (2006) The inflammasome–a linebacker of innate defense. N Engl J Med 355: 730–732.
[23]  Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29: 301–305.
[24]  Jeru I, Duquesnoy P, Fernandes-Alnemri T, Cochet E, Yu JW, et al. (2008) Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci U S A 105: 1614–1619.
[25]  Bruey JM, Bruey-Sedano N, Newman R, Chandler S, Stehlik C, et al. (2004) PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-kappaB and caspase-1 activation in macrophages. J Biol Chem 279: 51897–51907.
[26]  Zhang P, Dixon M, Zucchelli M, Hambiliki F, Levkov L, et al. (2008) Expression analysis of the NLRP gene family suggests a role in human preimplantation development. PLoS ONE 3: e2755. doi:10.1371/journal.pone.0002755.
[27]  Bestor TH (2003) Cytosine methylation mediates sexual conflict. Trends Genet 19: 185–190.
[28]  Van den Veyver IB, Al-Hussaini TK (2006) Biparental hydatidiform moles: a maternal effect mutation affecting imprinting in the offspring. Hum Reprod Update 12: 233–242.
[29]  Moglabey YB, Kircheisen R, Seoud M, El Mogharbel N, Van den Veyver I, et al. (1999) Genetic mapping of a maternal locus responsible for familial hydatidiform moles. Hum Mol Genet 8: 667–671.
[30]  El-Maarri O, Seoud M, Coullin P, Herbiniaux U, Oldenburg J, et al. (2003) Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum Mol Genet 12: 1405–1413.
[31]  Qian J, Deveault C, Bagga R, Xie X, Slim R (2007) Women heterozygous for NALP7/NLRP7 mutations are at risk for reproductive wastage: report of two novel mutations. Hum Mutat 28: 741.
[32]  Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, et al. (2006) Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 38: 300–302.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133