[1] | Haber JE (2000) Partners and pathways: repairing a double-strand break. Trends in Genetics 16: 259–264.
|
[2] | Roth DB, Porter TN, Wilson JH (1985) Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 5: 2599–2607.
|
[3] | Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63: 349–404.
|
[4] | Nassif N, Penney J, Pal S, Engels WR, Gloor GB (1994) Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol 14: 1613–1625.
|
[5] | Moore JK, Haber JE (1996) Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383: 644–646.
|
[6] | Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25: 4650–4657.
|
[7] | Liang F, Han M, Romanienko PJ, Jasin M (1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA 95: 5172–5177.
|
[8] | Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17: 6086–6095.
|
[9] | Lin Y, Waldman AS (2001) Capture of DNA sequences at double-strand breaks in mammalian chromosomes. Genetics 158: 1665–1674.
|
[10] | Ricchetti M, Fairhead C, Dujon B (1999) Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature 402: 96–100.
|
[11] | Yu X, Gabriel A (1999) Patching broken chromosomes with extranuclear cellular DNA. Mol Cell 4: 873–881.
|
[12] | Richardson C, Jasin M (2000) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405: 697–700.
|
[13] | Varga T, Aplan PD (2005) Chromosomal aberrations induced by double strand DNA breaks. DNA Repair (Amst) 4: 1038–1046.
|
[14] | D'Anjou H, Chabot C, Chartrand P (2004) Preferential accessibility to specific genomic loci for the repair of double-strand breaks in human cells. Nucleic Acids Res 32: 6136–6143.
|
[15] | Decottignies A (2005) Capture of extranuclear DNA at fission yeast double-strand breaks. Genetics 171: 1535–1548.
|
[16] | Teng S-C, Kim B, Gabriel A (1996) Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383: 641–644.
|
[17] | Phillips JW, Morgan WF (1994) Illegitimate recombination induced by DNA double-strand breaks in a mammalian chromosome. Mol Cell Biol 14: 5794–5803.
|
[18] | Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.
|
[19] | Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4: 203–221.
|
[20] | Richardson C, Jasin M (2000) Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol Cell Biol 20: 9068–9075.
|
[21] | Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605.
|
[22] | Luan DD, Eickbush TH (1995) RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol Cell Biol 15: 3882–3891.
|
[23] | Hedges SB, Kumar S (2004) Precision of molecular time estimates. Trends Genet 20: 242–247.
|
[24] | Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034–1050.
|
[25] | Miller W, Rosenbloom K, Hardison RC, Hou M, Taylor J, et al. (2007) 28-way vertebrate alignment and conservation track in the UCSC genome browser. Genome Res 17: 1797–1808.
|
[26] | Bailey JA, Eichler EE (2006) Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 7: 552–564.
|
[27] | Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, et al. (2005) Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 77: 78–88.
|
[28] | Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, et al. (2004) Detection of large-scale variation in the human genome. Nat Genet 36: 949–951.
|
[29] | Wong KK, deLeeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, et al. (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80: 91–104.
|
[30] | Thomas EE, Srebro N, Sebat J, Navin N, Healy J, et al. (2004) Distribution of short paired duplications in mammalian genomes. Proc Natl Acad Sci USA 101: 10349–10354.
|
[31] | Messer PW, Arndt PF (2007) The majority of recent short DNA insertions in the human genome are tandem duplications. Mol Biol Evol 24: 1190–1197.
|
[32] | Achaz G, Netter P, Coissac E (2001) Study of intrachromosomal duplications among the eukaryote genomes. Mol Biol Evol 18: 2280–2288.
|
[33] | Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
|
[34] | Bai Y, Casola C, Feschotte C, Betran E (2007) Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila. Genome Biol 8: R11.
|
[35] | Fiston-Lavier AS, Anxolabehere D, Quesneville H (2007) A model of segmental duplication formation in Drosophila melanogaster. Genome Res 17: 1458–1470.
|
[36] | Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, et al. (2002) Recent segmental duplications in the human genome. Science 297: 1003–1007.
|
[37] | Zhang L, Lu HH, Chung WY, Yang J, Li WH (2005) Patterns of segmental duplication in the human genome. Mol Biol Evol 22: 135–141.
|
[38] | Payen C, Koszul R, Dujon B, Fischer G (2008) Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 4: e1000175. doi:10.1371/journal.pgen.1000175.
|
[39] | Burz DS, Rivera-Pomar R, Jackle H, Hanes SD (1998) Cooperative DNA-binding by bicoid provides a mechanism for threshold-dependent gene activation in the Drosophila embryo. EMBO J 17: 5998–6009.
|
[40] | Courey AJ (2001) Cooperativity in transcriptional control. Curr Biol 11: R250–252.
|
[41] | Dermitzakis ET, Clark AG (2002) Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol 19: 1114–1121.
|
[42] | Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, et al. (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20: 1377–1419.
|
[43] | Sinha S, Siggia ED (2005) Sequence turnover and tandem repeats in cis-regulatory modules in Drosophila. Mol Biol Evol 22: 874–885.
|
[44] | Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.
|
[45] | Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438: 803–819.
|
[46] | Sawyer SL, Malik HS (2006) Positive selection of yeast nonhomologous end-joining genes and a retrotransposon conflict hypothesis. Proc Natl Acad Sci USA 103: 17614–17619.
|
[47] | Pavlicek A, Jurka J (2006) Positive selection on the nonhomologous end-joining factor Cernunnos-XLF in the human lineage. Biol Direct 1: 15.
|
[48] | Cheng Z, Ventura M, She X, Khaitovich P, Graves T, et al. (2005) A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437: 88–93.
|
[49] | Cheung J, Wilson MD, Zhang J, Khaja R, MacDonald JR, et al. (2003) Recent segmental and gene duplications in the mouse genome. Genome Biol 4: R47.
|
[50] | Tuzun E, Bailey JA, Eichler EE (2004) Recent segmental duplications in the working draft assembly of the brown Norway rat. Genome Res 14: 493–506.
|
[51] | Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12: 1455–1465.
|
[52] | Khan H, Smit A, Boissinot S (2006) Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res 16: 78–87.
|
[53] | Pace JK II, Feschotte C (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17: 422–432.
|
[54] | Ohshima K, Hattori M, Yada T, Gojobori T, Sakaki Y, et al. (2003) Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome Biol 4: R74.
|
[55] | Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357: 1383–1393.
|
[56] | Price AL, Eskin E, Pevzner PA (2004) Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res 14: 2245–2252.
|
[57] | Hazkani-Covo E, Graur D (2007) A comparative analysis of numt evolution in human and chimpanzee. Mol Biol Evol 24: 13–18.
|
[58] | Gherman A, Chen PE, Teslovich TM, Stankiewicz P, Withers M, et al. (2007) Population bottlenecks as a potential major shaping force of human genome architecture. PLoS Genet 3: e119. doi:10.1371/journal.pgen.0030119.
|
[59] | Bensasson D, Feldman MW, Petrov DA (2003) Rates of DNA duplication and mitochondrial DNA insertion in the human genome. J Mol Evol 57: 343–354.
|
[60] | She X, Liu G, Ventura M, Zhao S, Misceo D, et al. (2006) A preliminary comparative analysis of primate segmental duplications shows elevated substitution rates and a great-ape expansion of intrachromosomal duplications. Genome Res 16: 576–583.
|
[61] | Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, et al. (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453: 56–64.
|
[62] | Wang J, Wang W, Li R, Li Y, Tian G, et al. (2008) The diploid genome sequence of an Asian individual. Nature 456: 60–65.
|
[63] | Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA 97: 6634–6639.
|