Linkage Disequilibrium between Two High-Frequency Deletion Polymorphisms: Implications for Association Studies Involving the glutathione-S transferase (GST) Genes
Copy number variations (CNVs) represent a large source of genetic variation in humans and have been increasingly studied for disease association. A deletion polymorphism of the gene encoding the cytosolic detoxification enzyme glutathione S-transferase theta 1 (GSTT1) has been extensively studied for cancer susceptibility (919 studies, from HuGE navigator, http://www.hugenavigator.net/). However, clear conclusions have not been reached. Since the GSTT1 gene is located within a genomic region of segmental duplications (SD), there may be a confounding effect from another, yet-uncharacterized CNV at the same locus. Here we describe a previously uncharacterized 38-kilo-base (kb) long deletion polymorphism of GSTT2B located within a 61-kb DNA inverted repeat. GSTT2B is a duplicated copy of GSTT2, the only paralogue of GSTT1 in humans. A newly developed PCR assay revealed that a microhomology-mediated breakpoint appears to be shared among individuals at high frequency. The GSTT2B deletion polymorphism was in strong linkage disequilibrium (LD) (D′ = 0.841) with the neighboring GSTT1 deletion polymorphism in the Caucasian population. Alleles harboring a single deletion were significantly overrepresented (p = 2.22×10?16), suggesting a selection against alleles with both deletions. The deletion alleles are almost certainly the derived ones, because the GSTT2B-GSTT2-GSTT1 genes were strictly retained in chimpanzees. Extremely low GSTT2 mRNA expression was associated with the GSTT2B deletion, suggesting an influence of the deletion on the flanking region and loss of GSTT2 function. Genome-wide LD analysis between deletion polymorphisms further points to the uniqueness of two deletions, because strong LD between deletion polymorphisms might be very rare in humans. These results show a complex genomic organization and unexpected biological functions of CNVs within segmental duplications and emphasize the importance of detailed structural characterization for disease association studies.
References
[1]
Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK (2006) A high-resolution survey of deletion polymorphism in the human genome. Nat Genet 38: 75–81.
[2]
Hinds DA, Kloek AP, Jen M, Chen X, Frazer KA (2006) Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat Genet 38: 82–85.
[3]
Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, et al. (2004) Detection of large-scale variation in the human genome. Nat Genet 36: 949–951.
[4]
Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, et al. (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451: 998–1003.
[5]
McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, et al. (2006) Common deletion polymorphisms in the human genome. Nat Genet 38: 86–92.
[6]
Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, et al. (2006) Global variation in copy number in the human genome. Nature 444: 444–454.
[7]
Sebat J, Lakshmi B, Troge J, Alexander J, Young J, et al. (2004) Large-scale copy number polymorphism in the human genome. Science 305: 525–528.
[8]
Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, et al. (2005) Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 77: 78–88.
[9]
Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, et al. (2005) Fine-scale structural variation of the human genome. Nat Genet 37: 727–732.
[10]
Wong KK, deLeeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, et al. (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80: 91–104.
[11]
Perry GH, Ben-Dor A, Tsalenko A, Sampas N, Rodriguez-Revenga L, et al. (2008) The fine-scale and complex architecture of human copy-number variation. Am J Hum Genet 82: 685–695.
[12]
Cooper GM, Nickerson DA, Eichler EE (2007) Mutational and selective effects on copy-number variants in the human genome. Nat Genet 39: S22–S29.
[13]
Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, et al. (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453: 56–64.
[14]
Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, et al. (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318: 420–426.
[15]
Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, et al. (2002) Recent segmental duplications in the human genome. Science 297: 1003–1007.
[16]
Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE (2001) Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 11: 1005–1017.
[17]
Zhang L, Lu HH, Chung WY, Yang J, Li WH (2005) Patterns of segmental duplication in the human genome. Mol Biol Evol 22: 135–141.
[18]
Nguyen DQ, Webber C, Ponting CP (2006) Bias of selection on human copy-number variants. PLoS Genet 2: e20. doi:10.1371/journal.pgen.0020020.
[19]
Estivill X, Cheung J, Pujana MA, Nakabayashi K, Scherer SW, et al. (2002) Chromosomal regions containing high-density and ambiguously mapped putative single nucleotide polymorphisms (SNPs) correlate with segmental duplications in the human genome. Hum Mol Genet 11: 1987–1995.
[20]
Fredman D, White SJ, Potter S, Eichler EE, Den Dunnen JT, et al. (2004) Complex SNP-related sequence variation in segmental genome duplications. Nat Genet 36: 861–866.
[21]
Eichler EE, Nickerson DA, Altshuler D, Bowcock AM, Brooks LD, et al. (2007) Completing the map of human genetic variation. Nature 447: 161–165.
[22]
Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, et al. (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307: 1434–1440.
[23]
Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, et al. (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38: 24–26.
[24]
Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14: 417–422.
[25]
Lupski JR, de Oca-Luna RM, Slaugenhaupt S, Pentao L, Guzzetta V, et al. (1991) DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 66: 219–232.
[26]
Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18: 74–82.
[27]
Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, et al. (2007) Strong association of de novo copy number mutations with autism. Science 316: 445–449.
[28]
Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, et al. (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82: 477–488.
[29]
Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, et al. (2008) Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 359: 1685–1699.
[30]
Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, et al. (2008) Large recurrent microdeletions associated with schizophrenia. Nature 455: 232–236.
[31]
Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, et al. (1994) Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300 (Pt 1): 271–276.
[32]
Seidegard J, Vorachek WR, Pero RW, Pearson WR (1988) Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci U S A 85: 7293–7297.
[33]
Frova C (2006) Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng 23: 149–169.
[34]
Salinas AE, Wong MG (1999) Glutathione S-transferases—a review. Curr Med Chem 6: 279–309.
[35]
Ntais C, Polycarpou A, Ioannidis JP (2005) Association of GSTM1, GSTT1, and GSTP1 gene polymorphisms with the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 14: 176–181.
[36]
Raimondi S, Paracchini V, Autrup H, Barros-Dios JM, Benhamou S, et al. (2006) Meta- and pooled analysis of GSTT1 and lung cancer: a HuGE-GSEC review. Am J Epidemiol 164: 1027–1042.
[37]
White DL, Li D, Nurgalieva Z, El-Serag HB (2008) Genetic variants of glutathione S-transferase as possible risk factors for hepatocellular carcinoma: a HuGE systematic review and meta-analysis. Am J Epidemiol 167: 377–389.
[38]
Ye Z, Song H, Higgins JP, Pharoah P, Danesh J (2006) Five glutathione s-transferase gene variants in 23,452 cases of lung cancer and 30,397 controls: meta-analysis of 130 studies. PLoS Med 3: e91. doi:10.1371/journal.pmed.0030091.
[39]
Warburton PE, Giordano J, Cheung F, Gelfand Y, Benson G (2004) Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res 14: 1861–1869.
[40]
Leach DR (1994) Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. Bioessays 16: 893–900.
[41]
Lewis SM, Cote AG (2006) Palindromes and genomic stress fractures: bracing and repairing the damage. DNA Repair (Amst) 5: 1146–1160.
[42]
Tanaka H, Bergstrom DA, Yao MC, Tapscott SJ (2005) Widespread and nonrandom distribution of DNA palindromes in cancer cells provides a structural platform for subsequent gene amplification. Nat Genet 37: 320–327.
[43]
Cunningham LA, Cote AG, Cam-Ozdemir C, Lewis SM (2003) Rapid, stabilizing palindrome rearrangements in somatic cells by the center-break mechanism. Mol Cell Biol 23: 8740–8750.
[44]
Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, et al. (2000) PipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10: 577–586.
[45]
Sprenger R, Schlagenhaufer R, Kerb R, Bruhn C, Brockmoller J, et al. (2000) Characterization of the glutathione S-transferase GSTT1 deletion: discrimination of all genotypes by polymerase chain reaction indicates a trimodular genotype-phenotype correlation. Pharmacogenetics 10: 557–565.
[46]
Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68: 978–989.
[47]
Locke DP, Sharp AJ, McCarroll SA, McGrath SD, Newman TL, et al. (2006) Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome. Am J Hum Genet 79: 275–290.
[48]
McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, et al. (2008) Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 40: 1166–1174.
[49]
Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91: 1194–1210.
[50]
Tan KL, Board PG (1996) Purification and characterization of a recombinant human Theta-class glutathione transferase (GSTT2-2). Biochem J 315 (Pt 3): 727–732.
[51]
Hosgood HD 3rd, Berndt SI, Lan Q (2007) GST genotypes and lung cancer susceptibility in Asian populations with indoor air pollution exposures: a meta-analysis. Mutat Res 636: 134–143.
[52]
Payseur BA, Nachman MW (2000) Microsatellite variation and recombination rate in the human genome. Genetics 156: 1285–1298.
[53]
Akgun E, Zahn J, Baumes S, Brown G, Liang F, et al. (1997) Palindrome resolution and recombination in the mammalian germ line. Mol Cell Biol 17: 5559–5570.
[54]
Eykelenboom JK, Blackwood JK, Okely E, Leach DR (2008) SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome. Mol Cell 29: 644–651.
[55]
Merla G, Howald C, Henrichsen CN, Lyle R, Wyss C, et al. (2006) Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes. Am J Hum Genet 79: 332–341.
[56]
Coggan M, Whitbread L, Whittington A, Board P (1998) Structure and organization of the human theta-class glutathione S-transferase and D-dopachrome tautomerase gene complex. Biochem J 334 (Pt 3): 617–623.
[57]
Tanaka H, Tapscott SJ, Trask BJ, Yao MC (2002) Short inverted repeats initiate gene amplification through the formation of a large DNA palindrome in mammalian cells. Proc Natl Acad Sci U S A 99: 8772–8777.
[58]
Karaman MW, Houck ML, Chemnick LG, Nagpal S, Chawannakul D, et al. (2003) Comparative analysis of gene-expression patterns in human and African great ape cultured fibroblasts. Genome Res 13: 1619–1630.
[59]
Perry GH, Tchinda J, McGrath SD, Zhang J, Picker SR, et al. (2006) Hotspots for copy number variation in chimpanzees and humans. Proc Natl Acad Sci U S A 103: 8006–8011.
[60]
Landi S (2000) Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res 463: 247–283.
[61]
Rossjohn J, McKinstry WJ, Oakley AJ, Verger D, Flanagan J, et al. (1998) Human theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active site. Structure 6: 309–322.
[62]
Olson MV, Varki A (2003) Sequencing the chimpanzee genome: insights into human evolution and disease. Nat Rev Genet 4: 20–28.
[63]
Teresi RE, Zbuk KM, Pezzolesi MG, Waite KA, Eng C (2007) Cowden syndrome-affected patients with PTEN promoter mutations demonstrate abnormal protein translation. Am J Hum Genet 81: 756–767.
[64]
Yasuda LF, Yao MC (1991) Short inverted repeats at a free end signal large palindromic DNA formation in Tetrahymena. Cell 67: 505–516.