[1] | Cortes-Ledesma F, Aguilera A (2006) Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep 7: 919–926.
|
[2] | Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63: 349–404.
|
[3] | Soulas-Sprauel P, Rivera-Munoz P, Malivert L, Le Guyader G, Abramowski V, et al. (2007) V(D)J and immunoglobulin class switch recombinations: a paradigm to study the regulation of DNA end-joining. Oncogene 26: 7780–7791.
|
[4] | Downey M, Durocher D (2006) Chromatin and DNA repair: the benefits of relaxation. Nat Cell Biol 8: 9–10.
|
[5] | Abdu U, Klovstad M, Butin-Israeli V, Bakhrat A, Schupbach T (2007) An essential role for Drosophila hus1 in somatic and meiotic DNA damage responses. J Cell Sci 120: 1042–1049.
|
[6] | Pastink A, Eeken JC, Lohman PH (2001) Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481: 37–50.
|
[7] | Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18: 99–113.
|
[8] | Liang L, Deng L, Nguyen SC, Zhao X, Maulion CD, et al. (2008) Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Res.
|
[9] | Lieber MR (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem 283: 1–5.
|
[10] | McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234–282.
|
[11] | Muller (1938) The remaking of chromosomes. Collecting Net 8: 182–195.
|
[12] | Mason JM, Strobel E, Green MM (1984) mu-2: mutator gene in Drosophila that potentiates the induction of terminal deficiencies. Proc Natl Acad Sci USA 81: 6090–6094.
|
[13] | Yu GL, Blackburn EH (1991) Developmentally programmed healing of chromosomes by telomerase in Tetrahymena. Cell 67: 823–832.
|
[14] | Prescott DM (1994) The DNA of ciliated protozoa. Microbiol Rev 58: 233–267.
|
[15] | Mitelman F (1991) Catalog of chromosome aberrations in cancer
|
[16] | Trent JM, Stanbridge EJ, McBride HL, Meese EU, Casey G, et al. (1990) Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. Science 247: 568–571.
|
[17] | Mason JM, Champion LE, Hook G (1997) Germ-line effects of a mutator, mu2, in Drosophila melanogaster. Genetics 146: 1381–1397.
|
[18] | Mason JM, Champion L (1989) Meiotic effects of a mutator in Drosophila melanogaster that potentiates the recovery of terminal deletions. Prog Clin Biol Res 318: 73–80.
|
[19] | Graf U, Green MM, Wurgler FE (1979) Mutagen-sensitive mutants in Drosophila melanogaster: effects on premutational damage. Mutat Res 63: 101–112.
|
[20] | Kasravi A, Walter MF, Brand S, Mason JM, Biessmann H (1999) Molecular cloning and tissue-specific expression of the mutator2 gene (mu2) in Drosophila melanogaster. Genetics 152: 1025–1035.
|
[21] | Madigan JP, Chotkowski HL, Glaser RL (2002) DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res 30: 3698–3705.
|
[22] | Mahowald AP, Kambysellis MP (1980) Oogenesis. In: Ashburner M, Wright TRF, editors. Genetics and Biology of Drosophila. London: Academic Press. pp. 141–224.
|
[23] | Mehrotra S, McKim KS (2006) Temporal analysis of meiotic DNA double-strand break formation and repair in Drosophila females. PLoS Genet 2: e200. doi:10.1371/journal.pgen.0020200.
|
[24] | Rios-Doria J, Fay A, Velkova A, Monteiro AN (2006) DNA damage response: determining the fate of phosphorylated histone H2AX. Cancer Biol Ther 5: 142–144.
|
[25] | Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313: 903–919.
|
[26] | Obenauer J, Cantley L, Yaffe M (2003) Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucl Acid Res 31: 3635–3641.
|
[27] | Hematulin A, Sagan D, Eckardt-Schupp F, Moertl S (2008) NBS1 is required for IGF-1 induced cellular proliferation through the Ras/Raf/MEK/ERK cascade. Cell Signal 20: 2276–2285.
|
[28] | Lee JH, Ghirlando R, Bhaskara V, Hoffmeyer MR, Gu J, et al. (2003) Regulation of Mre11/Rad50 by Nbs1: effects on nucleotide-dependent DNA binding and association with ataxia-telangiectasia-like disorder mutant complexes. J Biol Chem 278: 45171–45181.
|
[29] | Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421: 961–966.
|
[30] | Romao L, Cash F, Weiss I, Liebhaber S, Pirastu M, et al. (1992) Human alpha-globin gene expression is silenced by terminal truncation of chromosome 16p beginning immediately 3′ of the zeta-globin gene. Hum Genet 89: 323–328.
|
[31] | Tsujimoto H, Usami N, Hasegawa K, Yamada T, Nagaki K, et al. (1999) De novo synthesis of telomere sequences at the healed breakpoints of wheat deletion chromosomes. Mol Gen Genet 262: 851–856.
|
[32] | Kramer KM, Haber JE (1993) New telomeres in yeast are initiated with a highly selected subset of TG1-3 repeats. Genes Dev 7: 2345–2356.
|
[33] | Pologe LG, Ravetch JV (1988) Large deletions result from breakage and healing of P. falciparum chromosomes. Cell 55: 869–874.
|
[34] | Tsukuda T, Fleming AB, Nickoloff JA, Osley MA (2005) Chromatin remodeling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438: 379–383.
|
[35] | Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR (2008) HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453: 682–686.
|
[36] | Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, et al. (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123: 1213–1226.
|
[37] | Goldberg M, Stucki M, Falck J, D'Amours D, Rahman D, et al. (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421: 952–956.
|
[38] | Lou Z, Minter-Dykhouse K, Wu X, Chen J (2003) MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 421: 957–961.
|
[39] | Dimitrova N, de Lange T (2006) MDC1 accelerates nonhomologous end-joining of dysfunctional telomeres. Genes Dev 20: 3238–3243.
|
[40] | Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, et al. (2006) MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21: 187–200.
|
[41] | Graf U, Piatkowska B, Wurgler FE (1969) X-ray-induced recessive lethals in newly inseminated eggs of Drosophila melanogaster. Mutat Res 7: 385–392.
|
[42] | Glover DM (1991) Mitosis in the Drosophila embryo—in and out of control. Trends Genet 7: 125–132.
|
[43] | Brittle AL, Nanba Y, Ito T, Ohkura H (2007) Concerted action of Aurora B, Polo and NHK-1 kinases in centromere-specific histone 2A phosphorylation. Exp Cell Res 313: 2780–2785.
|
[44] | Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, et al. (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 97: 6499–6503.
|
[45] | Rogers SL, Rogers GC (2008) Culture of Drosophila S2 cells and their use for RNAi-mediated loss-of-function studies and immunofluorescence microscopy. Nat Protoc 3: 606–611.
|
[46] | Page SL, Hawley RS (2001) c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev 15: 3130–3143.
|
[47] | Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475–1489.
|
[48] | Abrams JM, White K, Fessler LI, Steller H (1993) Programmed cell death during Drosophila embryogenesis. Development 117: 29–43.
|
[49] | Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120: 2121–2129.
|
[50] | Smolik S, Jones K (2007) Drosophila dCBP is involved in establishing the DNA replication checkpoint. Mol Cell Biol 27: 135–146.
|