[1] | Li XY, MacArthur S, Bourgon R, Nix D, Pollard DA, et al. (2008) Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol 6: e27. doi:10.1371/journal.pbio.0060027.
|
[2] | Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nat Rev Genet 8: 610–618.
|
[3] | Schlenke TA, Begun DJ (2004) Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc Natl Acad Sci U S A 101: 1626–1631.
|
[4] | Aminetzach YT, Macpherson JM, Petrov DA (2005) Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science 309: 764–767.
|
[5] | Nachman MW, Hoekstra HE, D'Agostino SL (2003) The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci U S A 100: 5268–5273.
|
[6] | Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, et al. (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428: 717–723.
|
[7] | Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, et al. (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature 442: 563–567.
|
[8] | Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313: 101–104.
|
[9] | Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, et al. (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 39: 31–40.
|
[10] | Gillespie JH (1991) The causes of molecular evolution. Oxford: Oxford University Press.
|
[11] | Mustonen V, Lassig M (2007) Adaptations to fluctuating selection in Drosophila. Proc Natl Acad Sci U S A 104: 2277–2282.
|
[12] | Kimura M (1983) The neutral theory of molecular evolution. Cambridge (United Kingdom): Cambridge University Press.
|
[13] | Gillespie J (2004) Population Genetics: A concise guide. Baltimore: Johns Hopkins University Press.
|
[14] | Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246: 96–98.
|
[15] | Kreitman M, Akashi H (1995) Molecular evidence for natural selection. Annual Review of Ecology and Systematics 26: 403–422.
|
[16] | Kreitman M (1996) The neutral theory is dead. Long live the neutral theory. Bioessays 18: 678–683. discussion 683.
|
[17] | Hey J (1999) The neutralist, the fly and the selectionist. Trends Ecol Evol 14: 35–38.
|
[18] | Li W-H (1997) Molecular Evolution. Sunderland (Massachusetts): Sinauer Associates.
|
[19] | Hartl D, Clark A (1997) Principles of population genetics. Sunderland (Massachusetts): Sinauer Associates.
|
[20] | Lynch M (2007) The origins of genome architecture. Sunderland (Massachusetts): Sinauer Associates.
|
[21] | McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654.
|
[22] | Charlesworth B (1994) The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res 63: 213–227.
|
[23] | Fay JC, Wyckoff GJ, Wu CI (2001) Positive and negative selection on the human genome. Genetics 158: 1227–1234.
|
[24] | Smith NG, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415: 1022–1024.
|
[25] | Loewe L, Charlesworth B (2006) Inferring the distribution of mutational effects on fitness in Drosophila. Biol Lett 2: 426–430.
|
[26] | Andolfatto P (2005) Adaptive evolution of non-coding DNA in Drosophila. Nature 437: 1149–1152.
|
[27] | Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034–1050.
|
[28] | Halligan DL, Keightley PD (2006) Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res 16: 875–884.
|
[29] | Fay JC, Wyckoff GJ, Wu CI (2002) Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415: 1024–1026.
|
[30] | Sawyer SA, Kulathinal RJ, Bustamante CD, Hartl DL (2003) Bayesian analysis suggests that most amino acid replacements in Drosophila are driven by positive selection. J Mol Evol 57: Suppl 1S154–164.
|
[31] | Sawyer SA, Parsch J, Zhang Z, Hartl DL (2007) Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proc Natl Acad Sci U S A 104: 6504–6510.
|
[32] | Bierne N, Eyre-Walker A (2004) The genomic rate of adaptive amino acid substitution in Drosophila. Mol Biol Evol 21: 1350–1360.
|
[33] | Andolfatto P (2007) Hitchhiking effects of recurrent beneficial amino acid substitutions in the Drosophila melanogaster genome. Genome Res 17: 1755–1762.
|
[34] | Shapiro JA, Huang W, Zhang C, Hubisz MJ, Lu J, et al. (2007) Adaptive genic evolution in the Drosophila genomes. Proc Natl Acad Sci U S A 104: 2271–2276.
|
[35] | Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh YP, et al. (2007) Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol 5: e310. doi:10.1371/journal.pbio.0050310.
|
[36] | Welch JJ (2006) Estimating the genomewide rate of adaptive protein evolution in Drosophila. Genetics 173: 821–837.
|
[37] | Haddrill PR, Bachtrog D, Andolfatto P (2008) Positive and negative selection on noncoding DNA in Drosophila simulans. Mol Biol Evol 25: 1825–1834.
|
[38] | Maside X, Charlesworth B (2007) Patterns of molecular variation and evolution in Drosophila americana and its relatives. Genetics 176: 2293–2305.
|
[39] | Bartolome C, Maside X, Yi S, Grant AL, Charlesworth B (2005) Patterns of selection on synonymous and nonsynonymous variants in Drosophila miranda. Genetics 169: 1495–1507.
|
[40] | Bachtrog D, Andolfatto P (2006) Selection, recombination and demographic history in Drosophila miranda. Genetics 174: 2045–2059.
|
[41] | Bachtrog D (2008) Similar rates of protein adaptation in Drosophila miranda and D. melanogaster, two species with different current effective population sizes. BMC Evol Biol 8: 334.
|
[42] | Proschel M, Zhang Z, Parsch J (2006) Widespread adaptive evolution of Drosophila genes with sex-biased expression. Genetics 174: 893–900.
|
[43] | Baines JF, Sawyer SA, Hartl DL, Parsch J (2008) Effects of X-linkage and sex-biased gene expression on the rate of adaptive protein evolution in Drosophila. Mol Biol Evol 25: 1639–1650.
|
[44] | Kohn MH, Fang S, Wu CI (2004) Inference of positive and negative selection on the 5′ regulatory regions of Drosophila genes. Mol Biol Evol 21: 374–383.
|
[45] | Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, et al. (1988) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16: 8207–8211.
|
[46] | Akashi H (1997) Codon bias evolution in Drosophila. Population genetics of mutation-selection drift. Gene 205: 269–278.
|
[47] | Singh ND, Larracuente AM, Clark AG (2008) Contrasting the efficacy of selection on the X and autosomes in Drosophila. Mol Biol Evol 25: 454–467.
|
[48] | Akashi H (1995) Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA. Genetics 139: 1067–1076.
|
[49] | Akashi H (1996) Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. Genetics 144: 1297–1307.
|
[50] | Keightley PD, Eyre-Walker A (2007) Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics 177: 2251–2261.
|
[51] | Templeton AR (1996) Contingency tests of neutrality using intra/interspecific gene trees: the rejection of neutrality for the evolution of the mitochondrial cytochrome oxidase II gene in the hominoid primates. Genetics 144: 1263–1270.
|
[52] | Charlesworth J, Eyre-Walker A (2008) The McDonald-Kreitman test and slightly deleterious mutations. Mol Biol Evol 25: 1007–1015.
|
[53] | Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, et al. (2005) Natural selection on protein-coding genes in the human genome. Nature 437: 1153–1157.
|
[54] | Ohta T (1993) Amino acid substitution at the Adh locus of Drosophila is facilitated by small population size. Proc Natl Acad Sci U S A 90: 4548–4551.
|
[55] | Eyre-Walker A (2002) Changing effective population size and the McDonald-Kreitman test. Genetics 162: 2017–2024.
|
[56] | Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39: 197–218.
|
[57] | Maynard Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23: 23–35.
|
[58] | Braverman JM, Hudson RR, Kaplan NL, Langley CH, Stephan W (1995) The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics 140: 783–796.
|
[59] | Kaplan NL, Hudson RR, Langley CH (1989) The “hitchhiking effect” revisited. Genetics 123: 887–899.
|
[60] | Gillespie JH (2000) Genetic drift in an infinite population. The pseudohitchhiking model. Genetics 155: 909–919.
|
[61] | Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134: 1289–1303.
|
[62] | Hudson RR, Kaplan NL (1995) Deleterious background selection with recombination. Genetics 141: 1605–1617.
|
[63] | Charlesworth D, Charlesworth B, Morgan MT (1995) The pattern of neutral molecular variation under the background selection model. Genetics 141: 1619–1632.
|
[64] | Gordo I, Navarro A, Charlesworth B (2002) Muller's ratchet and the pattern of variation at a neutral locus. Genetics 161: 835–848.
|
[65] | Aguade M, Miyashita N, Langley CH (1989) Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics 122: 607–615.
|
[66] | Berry AJ, Ajioka JW, Kreitman M (1991) Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics 129: 1111–1117.
|
[67] | Begun DJ, Aquadro CF (1992) Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 356: 519–520.
|
[68] | Aquadro CF, Begun DJ, Kindahl EC (1994) Selection, recombination, and DNA polymorphism in Drosophila. In: Golding B, editor. Non neutral-evolution: theories and molecular data. New York: Chapman and Hall. pp. 46–56.
|
[69] | Charlesworth B (1996) Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet Res 68: 131–149.
|
[70] | Zurovcova M, Eanes WF (1999) Lack of nucleotide polymorphism in the Y-linked sperm flagellar dynein gene Dhc-Yh3 of Drosophila melanogaster and D. simulans. Genetics 153: 1709–1715.
|
[71] | Andolfatto P, Przeworski M (2001) Regions of lower crossing over harbor more rare variants in African populations of Drosophila melanogaster. Genetics 158: 657–665.
|
[72] | Kulathinal RJ, Bennett SM, Fitzpatrick CL, Noor MA (2008) Fine-scale mapping of recombination rate in Drosophila refines its correlation to diversity and divergence. Proc Natl Acad Sci U S A 105: 10051–10056.
|
[73] | Hudson RR (1994) How can the low levels of DNA sequence variation in regions of the drosophila genome with low recombination rates be explained? Proc Natl Acad Sci U S A 91: 6815–6818.
|
[74] | Stephan W, Xing L, Kirby DA, Braverman JM (1998) A test of the background selection hypothesis based on nucleotide data from Drosophila ananassae. Proc Natl Acad Sci U S A 95: 5649–5654.
|
[75] | Kim Y, Stephan W (2000) Joint effects of genetic hitchhiking and background selection on neutral variation. Genetics 155: 1415–1427.
|
[76] | Andolfatto P (2001) Adaptive hitchhiking effects on genome variability. Curr Opin Genet Dev 11: 635–641.
|
[77] | Nielsen R (2001) Statistical tests of selective neutrality in the age of genomics. Heredity 86: 641–647.
|
[78] | Przeworski M (2002) The signature of positive selection at randomly chosen loci. Genetics 160: 1179–1189.
|
[79] | Wall JD, Andolfatto P, Przeworski M (2002) Testing models of selection and demography in Drosophila simulans. Genetics 162: 203–216.
|
[80] | Jensen JD, Kim Y, DuMont VB, Aquadro CF, Bustamante CD (2005) Distinguishing between selective sweeps and demography using DNA polymorphism data. Genetics 170: 1401–1410.
|
[81] | Thornton KR, Jensen JD, Becquet C, Andolfatto P (2007) Progress and prospects in mapping recent selection in the genome. Heredity 98: 340–348.
|
[82] | Macpherson JM, Sella G, Davis JC, Petrov DA (2007) Genomewide spatial correspondence between nonsynonymous divergence and neutral polymorphism reveals extensive adaptation in Drosophila. Genetics 177: 2083–2099.
|
[83] | Loewe L, Charlesworth B (2007) Background selection in single genes may explain patterns of codon bias. Genetics 175: 1381–1393.
|
[84] | Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, et al. (2008) Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet 4: e1000083. doi:10.1371/journal.pgen.1000083.
|
[85] | Wiehe TH, Stephan W (1993) Analysis of a genetic hitchhiking model, and its application to DNA polymorphism data from Drosophila melanogaster. Mol Biol Evol 10: 842–854.
|
[86] | Stephan W (1995) An improved method for estimating the rate of fixation of favorable mutations based on DNA polymorphism data. Mol Biol Evol 12: 959–962.
|
[87] | Eyre-Walker A (2006) The genomic rate of adaptive evolution. Trends Ecol Evol 21: 569–575.
|
[88] | Innan H, Stephan W (2003) Distinguishing the hitchhiking and background selection models. Genetics 165: 2307–2312.
|
[89] | Li H, Stephan W (2006) Inferring the demographic history and rate of adaptive substitution in Drosophila. PLoS Genet 2: e166. doi:10.1371/journal.pgen.0020166.
|
[90] | Lachaise D, Cariou ML, David JR, Lemeunier F, Tsacas L, et al. (1988) Historical biogeography of the Drosophila melanogaster species subgroup. In: Hecht MK, Wallace B, Prance GT, editors. Evolutionary biology. New York: Plenum. pp. 159–225.
|
[91] | Aquadro CF, Bauer DuMont V, Reed FA (2001) Genome-wide variation in the human and fruitfly: a comparison. Curr Opin Genet Dev 11: 627–634.
|
[92] | Jensen JD, Thornton KR, Andolfatto P (2008) An approximate bayesian estimator suggests strong, recurrent selective sweeps in Drosophila. PLoS Genet 4: e1000198. doi:10.1371/journal.pgen.1000198.
|
[93] | Gillespie JH (2001) Is the population size of a species relevant to its evolution? Evolution 55: 2161–2169.
|
[94] | Birky CW Jr, Walsh JB (1988) Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci U S A 85: 6414–6418.
|
[95] | Kliman RM, Andolfatto P, Coyne JA, Depaulis F, Kreitman M, et al. (2000) The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics 156: 1913–1931.
|
[96] | Machado CA, Kliman RM, Markert JA, Hey J (2002) Inferring the history of speciation from multilocus DNA sequence data: the case of Drosophila pseudoobscura and close relatives. Mol Biol Evol 19: 472–488.
|
[97] | Kopp A, Barmina O (2005) Evolutionary history of the Drosophila bipectinata species complex. Genet Res 85: 23–46.
|
[98] | Bachtrog D, Thornton K, Clark A, Andolfatto P (2006) Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution 60: 292–302.
|
[99] | Peck JR (1994) A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137: 597–606.
|
[100] | Kim Y (2004) Effect of strong directional selection on weakly selected mutations at linked sites: implication for synonymous codon usage. Mol Biol Evol 21: 286–294.
|
[101] | Hahn MW (2008) Toward a selection theory of molecular evolution. Evolution 62: 255–265.
|
[102] | Wright SI, Andolfatto P (2008) The impact of natural selection on the genome: emerging patterns in Drosophila and Arabidopsis. Annu Rev Ecol Systematics 39: 193–213.
|
[103] | (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 69–87.
|
[104] | Bakewell MA, Shi P, Zhang J (2007) More genes underwent positive selection in chimpanzee evolution than in human evolution. Proc Natl Acad Sci U S A 104: 7489–7494.
|
[105] | Nachman MW, Bauer VL, Crowell SL, Aquadro CF (1998) DNA variability and recombination rates at X-linked loci in humans. Genetics 150: 1133–1141.
|
[106] | Hellmann I, Prufer K, Ji H, Zody MC, Paabo S, et al. (2005) Why do human diversity levels vary at a megabase scale? Genome Res 15: 1222–1231.
|
[107] | Spencer C, Deloukas P, Hunt S, Mullikan J, Myers S, et al. (2006) The influence of recombination on human genetic diversity. PLoS Genet 2: e148. doi:10.1371/journal.pgen.0020148.
|
[108] | Hellmann I, Mang Y, Gu Z, Li P, de la Vega FM, et al. (2008) Population genetic analysis of shotgun assemblies of genomic sequences from multiple individuals. Genome Res 18: 1020–1029.
|
[109] | Cai JJ, Macpherson JM, Sella G, Petrov DA (2009) Pervasive hitchhiking at coding and regulatory sites in humans. PLoS Genet 5: e1000336. doi:10.1371/journal.pgen.1000336.
|
[110] | Wright SI, Lauga B, Charlesworth D (2002) Rates and patterns of molecular evolution in inbred and outbred Arabidopsis. Mol Biol Evol 19: 1407–1420.
|
[111] | Liti G, Carter DM, Moses AM, Warringer J, Parts L, et al. (2009) Population genomics of domestic and wild yeasts. Nature 458: 337–341.
|
[112] | Doniger SW, Kim HS, Swain D, Corcuera D, Williams M, et al. (2008) A catalog of neutral and deleterious polymorphism in yeast. PLoS Genet 4: e1000183. doi:10.1371/journal.pgen.1000183.
|
[113] | Bustamante CD, Nielsen R, Sawyer SA, Olsen KM, Purugganan MD, et al. (2002) The cost of inbreeding in Arabidopsis. Nature 416: 531–534.
|
[114] | Foxe JP, Dar VU, Zheng H, Nordborg M, Gaut BS, et al. (2008) Selection on amino acid substitutions in Arabidopsis. Mol Biol Evol 25: 1375–1383.
|
[115] | Weinreich DM, Rand DM (2000) Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes. Genetics 156: 385–399.
|
[116] | Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, et al. (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3: e196. doi:10.1371/journal.pbio.0030196.
|
[117] | Wright SI, Foxe JP, DeRose-Wilson L, Kawabe A, Looseley M, et al. (2006) Testing for effects of recombination rate on nucleotide diversity in natural populations of Arabidopsis lyrata. Genetics 174: 1421–1430.
|
[118] | Innan H, Kim Y (2004) Pattern of polymorphism after strong artificial selection in a domestication event. Proc Natl Acad Sci U S A 101: 10667–10672.
|
[119] | Przeworski M, Coop G, Wall JD (2005) The signature of positive selection on standing genetic variation. Evolution Int J Org Evolution 59: 2312–2323.
|
[120] | Pennings PS, Hermisson J (2006) Soft sweeps III: the signature of positive selection from recurrent mutation. PLoS Genet 2: e186. doi:10.1371/journal.pgen.0020186.
|
[121] | Ohta T (1993) An examination of the generation-time effect on molecular evolution. Proc Natl Acad Sci U S A 90: 10676–10680.
|
[122] | Otto SP, Whitlock MC (1997) The probability of fixation in populations of changing size. Genetics 146: 723–733.
|
[123] | Teshima K, Coop G, Przeworski M (2006) How reliable are empirical genomic scans for selective sweeps? Genome Res 16: 702–712.
|
[124] | Macpherson JM, Gonzalez J, Witten DM, Davis JC, Rosenberg NA, et al. (2008) Nonadaptive explanations for signatures of partial selective sweeps in Drosophila. Mol Biol Evol 25: 1025–1042.
|
[125] | Keightley PD, Lercher MJ, Eyre-Walker A (2005) Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol 3: e42. doi:10.1371/journal.pbio.0030042.
|
[126] | Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155: 1405–1413.
|
[127] | Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
|
[128] | Schaeffer SW (2002) Molecular population genetics of sequence length diversity in the Adh region of Drosophila pseudoobscura. Gen Res 80: 163–175.
|
[129] | Comeron JM, Kreitman M, Aguade M (1999) Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics 151: 239–249.
|