全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2009 

Pervasive Natural Selection in the Drosophila Genome?

DOI: 10.1371/journal.pgen.1000495

Full-Text   Cite this paper   Add to My Lib

Abstract:

Over the past four decades, the predominant view of molecular evolution saw little connection between natural selection and genome evolution, assuming that the functionally constrained fraction of the genome is relatively small and that adaptation is sufficiently infrequent to play little role in shaping patterns of variation within and even between species. Recent evidence from Drosophila, reviewed here, suggests that this view may be invalid. Analyses of genetic variation within and between species reveal that much of the Drosophila genome is under purifying selection, and thus of functional importance, and that a large fraction of coding and noncoding differences between species are adaptive. The findings further indicate that, in Drosophila, adaptations may be both common and strong enough that the fate of neutral mutations depends on their chance linkage to adaptive mutations as much as on the vagaries of genetic drift. The emerging evidence has implications for a wide variety of fields, from conservation genetics to bioinformatics, and presents challenges to modelers and experimentalists alike.

References

[1]  Li XY, MacArthur S, Bourgon R, Nix D, Pollard DA, et al. (2008) Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol 6: e27. doi:10.1371/journal.pbio.0060027.
[2]  Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nat Rev Genet 8: 610–618.
[3]  Schlenke TA, Begun DJ (2004) Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc Natl Acad Sci U S A 101: 1626–1631.
[4]  Aminetzach YT, Macpherson JM, Petrov DA (2005) Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science 309: 764–767.
[5]  Nachman MW, Hoekstra HE, D'Agostino SL (2003) The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci U S A 100: 5268–5273.
[6]  Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, et al. (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428: 717–723.
[7]  Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, et al. (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature 442: 563–567.
[8]  Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313: 101–104.
[9]  Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, et al. (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 39: 31–40.
[10]  Gillespie JH (1991) The causes of molecular evolution. Oxford: Oxford University Press.
[11]  Mustonen V, Lassig M (2007) Adaptations to fluctuating selection in Drosophila. Proc Natl Acad Sci U S A 104: 2277–2282.
[12]  Kimura M (1983) The neutral theory of molecular evolution. Cambridge (United Kingdom): Cambridge University Press.
[13]  Gillespie J (2004) Population Genetics: A concise guide. Baltimore: Johns Hopkins University Press.
[14]  Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246: 96–98.
[15]  Kreitman M, Akashi H (1995) Molecular evidence for natural selection. Annual Review of Ecology and Systematics 26: 403–422.
[16]  Kreitman M (1996) The neutral theory is dead. Long live the neutral theory. Bioessays 18: 678–683. discussion 683.
[17]  Hey J (1999) The neutralist, the fly and the selectionist. Trends Ecol Evol 14: 35–38.
[18]  Li W-H (1997) Molecular Evolution. Sunderland (Massachusetts): Sinauer Associates.
[19]  Hartl D, Clark A (1997) Principles of population genetics. Sunderland (Massachusetts): Sinauer Associates.
[20]  Lynch M (2007) The origins of genome architecture. Sunderland (Massachusetts): Sinauer Associates.
[21]  McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654.
[22]  Charlesworth B (1994) The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res 63: 213–227.
[23]  Fay JC, Wyckoff GJ, Wu CI (2001) Positive and negative selection on the human genome. Genetics 158: 1227–1234.
[24]  Smith NG, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415: 1022–1024.
[25]  Loewe L, Charlesworth B (2006) Inferring the distribution of mutational effects on fitness in Drosophila. Biol Lett 2: 426–430.
[26]  Andolfatto P (2005) Adaptive evolution of non-coding DNA in Drosophila. Nature 437: 1149–1152.
[27]  Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034–1050.
[28]  Halligan DL, Keightley PD (2006) Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res 16: 875–884.
[29]  Fay JC, Wyckoff GJ, Wu CI (2002) Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415: 1024–1026.
[30]  Sawyer SA, Kulathinal RJ, Bustamante CD, Hartl DL (2003) Bayesian analysis suggests that most amino acid replacements in Drosophila are driven by positive selection. J Mol Evol 57: Suppl 1S154–164.
[31]  Sawyer SA, Parsch J, Zhang Z, Hartl DL (2007) Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proc Natl Acad Sci U S A 104: 6504–6510.
[32]  Bierne N, Eyre-Walker A (2004) The genomic rate of adaptive amino acid substitution in Drosophila. Mol Biol Evol 21: 1350–1360.
[33]  Andolfatto P (2007) Hitchhiking effects of recurrent beneficial amino acid substitutions in the Drosophila melanogaster genome. Genome Res 17: 1755–1762.
[34]  Shapiro JA, Huang W, Zhang C, Hubisz MJ, Lu J, et al. (2007) Adaptive genic evolution in the Drosophila genomes. Proc Natl Acad Sci U S A 104: 2271–2276.
[35]  Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh YP, et al. (2007) Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol 5: e310. doi:10.1371/journal.pbio.0050310.
[36]  Welch JJ (2006) Estimating the genomewide rate of adaptive protein evolution in Drosophila. Genetics 173: 821–837.
[37]  Haddrill PR, Bachtrog D, Andolfatto P (2008) Positive and negative selection on noncoding DNA in Drosophila simulans. Mol Biol Evol 25: 1825–1834.
[38]  Maside X, Charlesworth B (2007) Patterns of molecular variation and evolution in Drosophila americana and its relatives. Genetics 176: 2293–2305.
[39]  Bartolome C, Maside X, Yi S, Grant AL, Charlesworth B (2005) Patterns of selection on synonymous and nonsynonymous variants in Drosophila miranda. Genetics 169: 1495–1507.
[40]  Bachtrog D, Andolfatto P (2006) Selection, recombination and demographic history in Drosophila miranda. Genetics 174: 2045–2059.
[41]  Bachtrog D (2008) Similar rates of protein adaptation in Drosophila miranda and D. melanogaster, two species with different current effective population sizes. BMC Evol Biol 8: 334.
[42]  Proschel M, Zhang Z, Parsch J (2006) Widespread adaptive evolution of Drosophila genes with sex-biased expression. Genetics 174: 893–900.
[43]  Baines JF, Sawyer SA, Hartl DL, Parsch J (2008) Effects of X-linkage and sex-biased gene expression on the rate of adaptive protein evolution in Drosophila. Mol Biol Evol 25: 1639–1650.
[44]  Kohn MH, Fang S, Wu CI (2004) Inference of positive and negative selection on the 5′ regulatory regions of Drosophila genes. Mol Biol Evol 21: 374–383.
[45]  Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, et al. (1988) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16: 8207–8211.
[46]  Akashi H (1997) Codon bias evolution in Drosophila. Population genetics of mutation-selection drift. Gene 205: 269–278.
[47]  Singh ND, Larracuente AM, Clark AG (2008) Contrasting the efficacy of selection on the X and autosomes in Drosophila. Mol Biol Evol 25: 454–467.
[48]  Akashi H (1995) Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA. Genetics 139: 1067–1076.
[49]  Akashi H (1996) Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. Genetics 144: 1297–1307.
[50]  Keightley PD, Eyre-Walker A (2007) Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics 177: 2251–2261.
[51]  Templeton AR (1996) Contingency tests of neutrality using intra/interspecific gene trees: the rejection of neutrality for the evolution of the mitochondrial cytochrome oxidase II gene in the hominoid primates. Genetics 144: 1263–1270.
[52]  Charlesworth J, Eyre-Walker A (2008) The McDonald-Kreitman test and slightly deleterious mutations. Mol Biol Evol 25: 1007–1015.
[53]  Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, et al. (2005) Natural selection on protein-coding genes in the human genome. Nature 437: 1153–1157.
[54]  Ohta T (1993) Amino acid substitution at the Adh locus of Drosophila is facilitated by small population size. Proc Natl Acad Sci U S A 90: 4548–4551.
[55]  Eyre-Walker A (2002) Changing effective population size and the McDonald-Kreitman test. Genetics 162: 2017–2024.
[56]  Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39: 197–218.
[57]  Maynard Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23: 23–35.
[58]  Braverman JM, Hudson RR, Kaplan NL, Langley CH, Stephan W (1995) The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics 140: 783–796.
[59]  Kaplan NL, Hudson RR, Langley CH (1989) The “hitchhiking effect” revisited. Genetics 123: 887–899.
[60]  Gillespie JH (2000) Genetic drift in an infinite population. The pseudohitchhiking model. Genetics 155: 909–919.
[61]  Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134: 1289–1303.
[62]  Hudson RR, Kaplan NL (1995) Deleterious background selection with recombination. Genetics 141: 1605–1617.
[63]  Charlesworth D, Charlesworth B, Morgan MT (1995) The pattern of neutral molecular variation under the background selection model. Genetics 141: 1619–1632.
[64]  Gordo I, Navarro A, Charlesworth B (2002) Muller's ratchet and the pattern of variation at a neutral locus. Genetics 161: 835–848.
[65]  Aguade M, Miyashita N, Langley CH (1989) Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics 122: 607–615.
[66]  Berry AJ, Ajioka JW, Kreitman M (1991) Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics 129: 1111–1117.
[67]  Begun DJ, Aquadro CF (1992) Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 356: 519–520.
[68]  Aquadro CF, Begun DJ, Kindahl EC (1994) Selection, recombination, and DNA polymorphism in Drosophila. In: Golding B, editor. Non neutral-evolution: theories and molecular data. New York: Chapman and Hall. pp. 46–56.
[69]  Charlesworth B (1996) Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet Res 68: 131–149.
[70]  Zurovcova M, Eanes WF (1999) Lack of nucleotide polymorphism in the Y-linked sperm flagellar dynein gene Dhc-Yh3 of Drosophila melanogaster and D. simulans. Genetics 153: 1709–1715.
[71]  Andolfatto P, Przeworski M (2001) Regions of lower crossing over harbor more rare variants in African populations of Drosophila melanogaster. Genetics 158: 657–665.
[72]  Kulathinal RJ, Bennett SM, Fitzpatrick CL, Noor MA (2008) Fine-scale mapping of recombination rate in Drosophila refines its correlation to diversity and divergence. Proc Natl Acad Sci U S A 105: 10051–10056.
[73]  Hudson RR (1994) How can the low levels of DNA sequence variation in regions of the drosophila genome with low recombination rates be explained? Proc Natl Acad Sci U S A 91: 6815–6818.
[74]  Stephan W, Xing L, Kirby DA, Braverman JM (1998) A test of the background selection hypothesis based on nucleotide data from Drosophila ananassae. Proc Natl Acad Sci U S A 95: 5649–5654.
[75]  Kim Y, Stephan W (2000) Joint effects of genetic hitchhiking and background selection on neutral variation. Genetics 155: 1415–1427.
[76]  Andolfatto P (2001) Adaptive hitchhiking effects on genome variability. Curr Opin Genet Dev 11: 635–641.
[77]  Nielsen R (2001) Statistical tests of selective neutrality in the age of genomics. Heredity 86: 641–647.
[78]  Przeworski M (2002) The signature of positive selection at randomly chosen loci. Genetics 160: 1179–1189.
[79]  Wall JD, Andolfatto P, Przeworski M (2002) Testing models of selection and demography in Drosophila simulans. Genetics 162: 203–216.
[80]  Jensen JD, Kim Y, DuMont VB, Aquadro CF, Bustamante CD (2005) Distinguishing between selective sweeps and demography using DNA polymorphism data. Genetics 170: 1401–1410.
[81]  Thornton KR, Jensen JD, Becquet C, Andolfatto P (2007) Progress and prospects in mapping recent selection in the genome. Heredity 98: 340–348.
[82]  Macpherson JM, Sella G, Davis JC, Petrov DA (2007) Genomewide spatial correspondence between nonsynonymous divergence and neutral polymorphism reveals extensive adaptation in Drosophila. Genetics 177: 2083–2099.
[83]  Loewe L, Charlesworth B (2007) Background selection in single genes may explain patterns of codon bias. Genetics 175: 1381–1393.
[84]  Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, et al. (2008) Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet 4: e1000083. doi:10.1371/journal.pgen.1000083.
[85]  Wiehe TH, Stephan W (1993) Analysis of a genetic hitchhiking model, and its application to DNA polymorphism data from Drosophila melanogaster. Mol Biol Evol 10: 842–854.
[86]  Stephan W (1995) An improved method for estimating the rate of fixation of favorable mutations based on DNA polymorphism data. Mol Biol Evol 12: 959–962.
[87]  Eyre-Walker A (2006) The genomic rate of adaptive evolution. Trends Ecol Evol 21: 569–575.
[88]  Innan H, Stephan W (2003) Distinguishing the hitchhiking and background selection models. Genetics 165: 2307–2312.
[89]  Li H, Stephan W (2006) Inferring the demographic history and rate of adaptive substitution in Drosophila. PLoS Genet 2: e166. doi:10.1371/journal.pgen.0020166.
[90]  Lachaise D, Cariou ML, David JR, Lemeunier F, Tsacas L, et al. (1988) Historical biogeography of the Drosophila melanogaster species subgroup. In: Hecht MK, Wallace B, Prance GT, editors. Evolutionary biology. New York: Plenum. pp. 159–225.
[91]  Aquadro CF, Bauer DuMont V, Reed FA (2001) Genome-wide variation in the human and fruitfly: a comparison. Curr Opin Genet Dev 11: 627–634.
[92]  Jensen JD, Thornton KR, Andolfatto P (2008) An approximate bayesian estimator suggests strong, recurrent selective sweeps in Drosophila. PLoS Genet 4: e1000198. doi:10.1371/journal.pgen.1000198.
[93]  Gillespie JH (2001) Is the population size of a species relevant to its evolution? Evolution 55: 2161–2169.
[94]  Birky CW Jr, Walsh JB (1988) Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci U S A 85: 6414–6418.
[95]  Kliman RM, Andolfatto P, Coyne JA, Depaulis F, Kreitman M, et al. (2000) The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics 156: 1913–1931.
[96]  Machado CA, Kliman RM, Markert JA, Hey J (2002) Inferring the history of speciation from multilocus DNA sequence data: the case of Drosophila pseudoobscura and close relatives. Mol Biol Evol 19: 472–488.
[97]  Kopp A, Barmina O (2005) Evolutionary history of the Drosophila bipectinata species complex. Genet Res 85: 23–46.
[98]  Bachtrog D, Thornton K, Clark A, Andolfatto P (2006) Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution 60: 292–302.
[99]  Peck JR (1994) A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137: 597–606.
[100]  Kim Y (2004) Effect of strong directional selection on weakly selected mutations at linked sites: implication for synonymous codon usage. Mol Biol Evol 21: 286–294.
[101]  Hahn MW (2008) Toward a selection theory of molecular evolution. Evolution 62: 255–265.
[102]  Wright SI, Andolfatto P (2008) The impact of natural selection on the genome: emerging patterns in Drosophila and Arabidopsis. Annu Rev Ecol Systematics 39: 193–213.
[103]  (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 69–87.
[104]  Bakewell MA, Shi P, Zhang J (2007) More genes underwent positive selection in chimpanzee evolution than in human evolution. Proc Natl Acad Sci U S A 104: 7489–7494.
[105]  Nachman MW, Bauer VL, Crowell SL, Aquadro CF (1998) DNA variability and recombination rates at X-linked loci in humans. Genetics 150: 1133–1141.
[106]  Hellmann I, Prufer K, Ji H, Zody MC, Paabo S, et al. (2005) Why do human diversity levels vary at a megabase scale? Genome Res 15: 1222–1231.
[107]  Spencer C, Deloukas P, Hunt S, Mullikan J, Myers S, et al. (2006) The influence of recombination on human genetic diversity. PLoS Genet 2: e148. doi:10.1371/journal.pgen.0020148.
[108]  Hellmann I, Mang Y, Gu Z, Li P, de la Vega FM, et al. (2008) Population genetic analysis of shotgun assemblies of genomic sequences from multiple individuals. Genome Res 18: 1020–1029.
[109]  Cai JJ, Macpherson JM, Sella G, Petrov DA (2009) Pervasive hitchhiking at coding and regulatory sites in humans. PLoS Genet 5: e1000336. doi:10.1371/journal.pgen.1000336.
[110]  Wright SI, Lauga B, Charlesworth D (2002) Rates and patterns of molecular evolution in inbred and outbred Arabidopsis. Mol Biol Evol 19: 1407–1420.
[111]  Liti G, Carter DM, Moses AM, Warringer J, Parts L, et al. (2009) Population genomics of domestic and wild yeasts. Nature 458: 337–341.
[112]  Doniger SW, Kim HS, Swain D, Corcuera D, Williams M, et al. (2008) A catalog of neutral and deleterious polymorphism in yeast. PLoS Genet 4: e1000183. doi:10.1371/journal.pgen.1000183.
[113]  Bustamante CD, Nielsen R, Sawyer SA, Olsen KM, Purugganan MD, et al. (2002) The cost of inbreeding in Arabidopsis. Nature 416: 531–534.
[114]  Foxe JP, Dar VU, Zheng H, Nordborg M, Gaut BS, et al. (2008) Selection on amino acid substitutions in Arabidopsis. Mol Biol Evol 25: 1375–1383.
[115]  Weinreich DM, Rand DM (2000) Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes. Genetics 156: 385–399.
[116]  Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, et al. (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3: e196. doi:10.1371/journal.pbio.0030196.
[117]  Wright SI, Foxe JP, DeRose-Wilson L, Kawabe A, Looseley M, et al. (2006) Testing for effects of recombination rate on nucleotide diversity in natural populations of Arabidopsis lyrata. Genetics 174: 1421–1430.
[118]  Innan H, Kim Y (2004) Pattern of polymorphism after strong artificial selection in a domestication event. Proc Natl Acad Sci U S A 101: 10667–10672.
[119]  Przeworski M, Coop G, Wall JD (2005) The signature of positive selection on standing genetic variation. Evolution Int J Org Evolution 59: 2312–2323.
[120]  Pennings PS, Hermisson J (2006) Soft sweeps III: the signature of positive selection from recurrent mutation. PLoS Genet 2: e186. doi:10.1371/journal.pgen.0020186.
[121]  Ohta T (1993) An examination of the generation-time effect on molecular evolution. Proc Natl Acad Sci U S A 90: 10676–10680.
[122]  Otto SP, Whitlock MC (1997) The probability of fixation in populations of changing size. Genetics 146: 723–733.
[123]  Teshima K, Coop G, Przeworski M (2006) How reliable are empirical genomic scans for selective sweeps? Genome Res 16: 702–712.
[124]  Macpherson JM, Gonzalez J, Witten DM, Davis JC, Rosenberg NA, et al. (2008) Nonadaptive explanations for signatures of partial selective sweeps in Drosophila. Mol Biol Evol 25: 1025–1042.
[125]  Keightley PD, Lercher MJ, Eyre-Walker A (2005) Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol 3: e42. doi:10.1371/journal.pbio.0030042.
[126]  Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155: 1405–1413.
[127]  Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
[128]  Schaeffer SW (2002) Molecular population genetics of sequence length diversity in the Adh region of Drosophila pseudoobscura. Gen Res 80: 163–175.
[129]  Comeron JM, Kreitman M, Aguade M (1999) Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics 151: 239–249.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133