全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2009 

Genome-Wide Identification of Alternative Splice Forms Down-Regulated by Nonsense-Mediated mRNA Decay in Drosophila

DOI: 10.1371/journal.pgen.1000525

Full-Text   Cite this paper   Add to My Lib

Abstract:

Alternative mRNA splicing adds a layer of regulation to the expression of thousands of genes in Drosophila melanogaster. Not all alternative splicing results in functional protein; it can also yield mRNA isoforms with premature stop codons that are degraded by the nonsense-mediated mRNA decay (NMD) pathway. This coupling of alternative splicing and NMD provides a mechanism for gene regulation that is highly conserved in mammals. NMD is also active in Drosophila, but its effect on the repertoire of alternative splice forms has been unknown, as has the mechanism by which it recognizes targets. Here, we have employed a custom splicing-sensitive microarray to globally measure the effect of alternative mRNA processing and NMD on Drosophila gene expression. We have developed a new algorithm to infer the expression change of each mRNA isoform of a gene based on the microarray measurements. This method is of general utility for interpreting splicing-sensitive microarrays and high-throughput sequence data. Using this approach, we have identified a high-confidence set of 45 genes where NMD has a differential effect on distinct alternative isoforms, including numerous RNA–binding and ribosomal proteins. Coupled alternative splicing and NMD decrease expression of these genes, which may in turn have a downstream effect on expression of other genes. The NMD–affected genes are enriched for roles in translation and mitosis, perhaps underlying the previously observed role of NMD factors in cell cycle progression. Our results have general implications for understanding the NMD mechanism in fly. Most notably, we found that the NMD–target mRNAs had significantly longer 3′ untranslated regions (UTRs) than the nontarget isoforms of the same genes, supporting a role for 3′ UTR length in the recognition of NMD targets in fly.

References

[1]  Culbertson MR, Leeds PF (2003) Looking at mRNA decay pathways through the window of molecular evolution. Curr Opin Genet Dev 13: 207–214.
[2]  Cali BM, Anderson P (1998) mRNA surveillance mitigates genetic dominance in Caenorhabditis elegans. Mol Gen Genet 260: 176–184.
[3]  Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo F, Dietz HC (2004) Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet 36: 1073–1078.
[4]  Pan Q, Saltzman AL, Kim YK, Misquitta C, Shai O, et al. (2006) Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes Dev 20: 153–158.
[5]  Isken O, Maquat LE (2007) Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 21: 1833–1856.
[6]  Rehwinkel J, Raes J, Izaurralde E (2006) Nonsense-mediated mRNA decay: Target genes and functional diversification of effectors. Trends Biochem Sci 31: 639–646.
[7]  Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A 100: 189–192.
[8]  Lareau LF, Brooks AN, Soergel DAW, Meng Q, Brenner SE (2007) The coupling of alternative splicing and nonsense mediated mRNA decay. In: Blencowe BJ, Graveley BR, editors. Alternative splicing in the postgenomic era, Landes Biosciences. pp. 191–212.
[9]  Sureau A, Gattoni R, Dooghe Y, Stevenin J, Soret J (2001) SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J 20: 1785–1796.
[10]  Wollerton MC, Gooding C, Wagner EJ, Garcia-Blanco MA, Smith CWJ (2004) Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol Cell 13: 91–100.
[11]  Lareau LF, Inada M, Green RE, Wengrod JC, Brenner SE (2007) Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446: 926–929.
[12]  Ni JZ, Grate L, Donohue JP, Preston C, Nobida N, et al. (2007) Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev 21: 708–718.
[13]  Saltzman AL, Kim YK, Pan Q, Fagnani MM, Maquat LE, et al. (2008) Regulation of multiple core spliceosomal proteins by alternative splicing-coupled nonsense-mediated mRNA decay. Mol Cell Biol 28: 4320–4330.
[14]  Rossbach O, Hung LH, Schreiner S, Grishina I, Heiner M, et al. (2009) Auto- and cross-regulation of the hnRNP L proteins by alternative splicing. Mol Cell Biol 29: 1442–1451.
[15]  Hyvonen MT, Uimari A, Keinanen TA, Heikkinen S, Pellinen R, et al. (2006) Polyamine-regulated unproductive splicing and translation of spermidine/spermine N1-acetyltransferase. RNA 12: 1569–1582.
[16]  Stolc V, Gauhar Z, Mason C, Halasz G, van Batenburg MF, et al. (2004) A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306: 655–660.
[17]  Bell LR, Maine EM, Schedl P, Cline TW (1988) Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell 55: 1037–1046.
[18]  Hattori D, Demir E, Kim HW, Viragh E, Zipursky SL, et al. (2007) Dscam diversity is essential for neuronal wiring and self-recognition. Nature 449: 223–227.
[19]  Gabut M, Dejardin J, Tazi J, Soret J (2007) The SR family proteins B52 and dASF/SF2 modulate development of the Drosophila visual system by regulating specific RNA targets. Mol Cell Biol 27: 3087–3097.
[20]  Rehwinkel J, Letunic I, Raes J, Bork P, Izaurralde E (2005) Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA 11: 1530–44.
[21]  Alonso CR, Akam M (2003) A Hox gene mutation that triggers nonsense-mediated RNA decay and affects alternative splicing during Drosophila development. Nucleic Acids Res 31: 3873–3880.
[22]  Gatfield D, Unterholzner L, Ciccarelli FD, Bork P, Izaurralde E (2003) Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J 22: 3960–3970.
[23]  Le Hir H, Izaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19: 6860–6869.
[24]  Nagy E, Maquat LE (1998) A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 23: 198–199.
[25]  Behm-Ansmant I, Gatfield D, Rehwinkel J, Hilgers V, Izaurralde E (2007) A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO J 26: 1591–1601.
[26]  Calarco JA, Saltzman AL, Ip JY, Blencowe BJ (2007) Technologies for the global discovery and analysis of alternative splicing. In: Blencowe BJ, Graveley BR, editors. Alternative splicing in the postgenomic era, Landes Biosciences. pp. 64–84.
[27]  Blanchette M, Green RE, Brenner SE, Rio DC (2005) Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev 19: 1306–1314.
[28]  McIntyre LM, Bono LM, Genissel A, Westerman R, Junk D, et al. (2006) Sex-specific expression of alternative transcripts in Drosophila. Genome Biol 7: R79.
[29]  Blanchette M, Green RE, MacArthur S, Brooks AN, Brenner SE, et al. (2009) Genome-wide analysis of alternative pre-mRNA splicing and RNA-binding specificities of the Drosophila hnRNP A/B family members. Mol Cell 33: 438–449.
[30]  Barberan-Soler S, Zahler AM (2008) Alternative splicing regulation during C. elegans development: splicing factors as regulated targets. PLoS Genet 4: e1000001. doi:10.1371/journal.pgen.1000001.
[31]  Sayani S, Janis M, Lee CY, Toesca I, Chanfreau GF (2008) Widespread impact of nonsense-mediated mrna decay on the yeast intronome. Mol Cell 31: 360–370.
[32]  Shai O, Morris QD, Blencowe BJ, Frey BJ (2006) Inferring global levels of alternative splicing isoforms using a generative model of microarray data. Bioinformatics 22: 606–13.
[33]  Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, et al. (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25: 288–289.
[34]  Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, et al. (2007) Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316: 417–421.
[35]  Somma MP, Ceprani F, Bucciarelli E, Naim V, De Arcangelis V, et al. (2008) Identification of Drosophila mitotic genes by combining co-expression analysis and RNA interference. PLoS Genet 4: e1000126. doi:10.1371/journal.pgen.1000126.
[36]  FlyBase (2007) Polypeptide report help. Available: http://flybase.org/static_pages/newhelp/?polypeptide_help.html. Accessed 28 May 2009.
[37]  Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108: 229–241.
[38]  Kozak M (2002) Pushing the limits of the scanning mechanism for initiation of translation. Gene 299: 1–34.
[39]  Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34: W609–12.
[40]  Ruiz-Echevarria MJ, Peltz SW (2000) The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell 101: 741–751.
[41]  Hornstein E, Harel H, Levy G, Meyuhas O (1999) Overexpression of poly(A)-binding protein down-regulates the translation or the abundance of its own mRNA. FEBS Lett 457: 209–213.
[42]  Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Bio. AAAI Press, volume 2. pp. 28–36.
[43]  Zhang S, Ruiz-Echevarria MJ, Quan Y, Peltz SW (1995) Identification and characterization of a sequence motif involved in nonsense-mediated mRNA decay. Mol Cell Biol 15: 2231–2244.
[44]  Fairbrother WG, Yeh RF, Sharp PA, Burge CB (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297: 1007–1013.
[45]  Kim YK, Furic L, Desgroseillers L, Maquat LE (2005) Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell 120: 195–208.
[46]  Kim YK, Furic L, Parisien M, Major F, DesGroseillers L, et al. (2007) Staufen1 regulates diverse classes of mammalian transcripts. EMBO J 26: 2670–2681.
[47]  Cuccurese M, Russo G, Russo A, Pietropaolo C (2005) Alternative splicing and nonsense-mediated mRNA decay regulate mammalian ribosomal gene expression. Nucleic Acids Res 33: 5965–5977.
[48]  Vilardell J, Chartrand P, Singer RH, Warner JR (2000) The odyssey of a regulated transcript. RNA 6: 1773–1780.
[49]  McGlincy NJ, Smith CWJ (2008) Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem Sci 33: 385–393.
[50]  Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Du-doit S, R Irizarry WH, editors. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer. pp. 397–420.
[51]  Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biology 5: R80.
[52]  Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, et al. (2007) A comparison of background correction methods for two-colour microarrays. Bioinformatics 23: 2700–2707.
[53]  Lange K (1994) An adaptive barrier method for convex programming. Methods and Applications of Analysis 1: 392–402.
[54]  Bates DM, Watts DG (1988) Nonlinear Regression Analysis and Its Applications. John Wiley & Sons.
[55]  Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2006) A Lego System for Conditional Inference. The American Statistician 60: 257–263.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133