全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2009 

The RNA Polymerase Dictates ORF1 Requirement and Timing of LINE and SINE Retrotransposition

DOI: 10.1371/journal.pgen.1000458

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mobile elements comprise close to one half of the mass of the human genome. Only LINE-1 (L1), an autonomous non-Long Terminal Repeat (LTR) retrotransposon, and its non-autonomous partners—such as the retropseudogenes, SVA, and the SINE, Alu—are currently active human retroelements. Experimental evidence shows that Alu retrotransposition depends on L1 ORF2 protein, which has led to the presumption that LINEs and SINEs share the same basic insertional mechanism. Our data demonstrate clear differences in the time required to generate insertions between marked Alu and L1 elements. In our tissue culture system, the process of L1 insertion requires close to 48 hours. In contrast to the RNA pol II-driven L1, we find that pol III transcribed elements (Alu, the rodent SINE B2, and the 7SL, U6 and hY sequences) can generate inserts within 24 hours or less. Our analyses demonstrate that the observed retrotransposition timing does not dictate insertion rate and is independent of the type of reporter cassette utilized. The additional time requirement by L1 cannot be directly attributed to differences in transcription, transcript length, splicing processes, ORF2 protein production, or the ability of functional ORF2p to reach the nucleus. However, the insertion rate of a marked Alu transcript drastically drops when driven by an RNA pol II promoter (CMV) and the retrotransposition timing parallels that of L1. Furthermore, the “pol II Alu transcript” behaves like the processed pseudogenes in our retrotransposition assay, requiring supplementation with L1 ORF1p in addition to ORF2p. We postulate that the observed differences in retrotransposition kinetics of these elements are dictated by the type of RNA polymerase generating the transcript. We present a model that highlights the critical differences of LINE and SINE transcripts that likely define their retrotransposition timing.

References

[1]  Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.
[2]  Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.
[3]  Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521.
[4]  Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35: 41–48.
[5]  Goncalves I, Duret L, Mouchiroud D (2000) Nature and structure of human genes that generate retropseudogenes. Genome Res 10: 672–678.
[6]  Belancio VP, Hedges DJ, Deininger P (2006) LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Research 34: 1512–1521.
[7]  Song M, Boissinot S (2006) Selection against LINE-1 retrotransposons results principally from their ability to mediate ectopic recombination. Gene 390: 206–213.
[8]  Chen JM, Stenson PD, Cooper DN, Ferec C (2005) A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 117: 411–427.
[9]  Dewannieux M, Heidmann T (2005) L1-mediated retrotransposition of murine B1 and B2 SINEs recapitulated in cultured cells. J Mol Biol 349: 241–247.
[10]  Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, et al. (2001) Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 21: 1429–1439.
[11]  Kulpa DA, Moran JV (2006) Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol 13: 655–660.
[12]  Hsu K, Chang DY, Maraia RJ (1995) Human signal recognition particle (SRP) Alu-associated protein also binds Alu interspersed repeat sequence RNAs. Characterization of human SRP9. J Biol Chem 270: 10179–10186.
[13]  Bennett EA, Keller H, Mills RE, Schmidt S, Moran JV, et al. (2008) Active Alu retrotransposons in the human genome. Genome Res 18: 1875–1883.
[14]  Boeke J, Garfinkel DJ, Styles CA, Fink CR (1985) Ty elements transpose through an RNA intermediate. Cell 40: 491–500.
[15]  Holmes SE, Singer MF, Swergold GD (1992) Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element. J Biol Chem 267: 19765–19768.
[16]  Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, et al. (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87: 917–927.
[17]  Wallace N, Wagstaff BJ, Deininger PL, Roy-Engel AM (2008) LINE-1 ORF1 protein enhances Alu SINE retrotransposition. Gene 419: 1–6.
[18]  Martin SL, Bushman FD (2001) Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol 21: 467–475.
[19]  Martin SL, Cruceanu M, Branciforte D, Wai-Lun LP, Kwok SC, et al. (2005) LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. J Mol Biol 348: 549–561.
[20]  Basame S, Wai-Lun LP, Howard G, Branciforte D, Keller D, et al. (2006) Spatial Assembly and RNA Binding Stoichiometry of a LINE-1 Protein Essential for Retrotransposition. J Mol Biol 357: 351–357.
[21]  Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254: 1808–1810.
[22]  Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87: 905–916.
[23]  Kulpa DA, Moran JV (2005) Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum Mol Genet 14: 3237–3248.
[24]  Kremerskothen J, Zopf D, Walter P, Cheng JG, Nettermann M, et al. (1998) Heterodimer SRP9/14 is an integral part of the neural BC200 RNP in primate brain. Neurosci Lett 245: 123–126.
[25]  West N, Roy-Engel A, Imataka H, Sonenberg N, Deininger P (2002) Shared Protein Components of SINE RNPs. J Mol Biol 321: 423–432.
[26]  Boeke JD (1997) LINEs and Alus–the polyA connection. Nat Genet 16: 6–7.
[27]  Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605.
[28]  Goodier JL, Ostertag EM, Engleka KA, Seleme MC, Kazazian HH Jr (2004) A potential role for the nucleolus in L1 retrotransposition. Hum Mol Genet 13: 1041–1048.
[29]  Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24: 363–367.
[30]  Roy-Engel AM, Salem AH, Oyeniran OO, Deininger L, Hedges DJ, et al. (2002) Active alu element “A-Tails”: size does matter. Genome Res 12: 1333–1344.
[31]  Dewannieux M, Heidmann T (2005) Role of poly(A) tail length in Alu retrotransposition. Genomics 86: 378–381.
[32]  Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, et al. (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31: 159–165.
[33]  Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357: 1383–1393.
[34]  Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94: 1872–1877.
[35]  Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr (2003) SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 73: 1444–1451.
[36]  Perreault J, Noel JF, Briere F, Cousineau B, Lucier JF, et al. (2005) Retropseudogenes derived from the human Ro/SS-A autoantigen-associated hY RNAs. Nucleic Acids Res 33: 2032–2041.
[37]  Kramerov DA, Vassetzky NS (2005) Short retroposons in eukaryotic genomes. Int Rev Cytol 247: 165–221.
[38]  Walter P, Blobel G (1982) Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299: 691–698.
[39]  Perreault J, Perreault JP, Boire G (2007) The Ro Associated Y RNAs in Metazoans: Evolution and Diversification. Mol Biol Evol 24: 1678–1689.
[40]  Thayer RE, Singer MF, Fanning TG (1993) Undermethylation of specific LINE-1 sequences in human cells producing a LINE-1-encoded protein. Gene 133: 273–277.
[41]  Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429: 268–274.
[42]  Perepelitsa-Belancio V, Deininger PL (2003) RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat Genet 35: 363–366.
[43]  Athanikar JN, Badge RM, Moran JV (2004) A YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res 32: 3846–3855.
[44]  Dmitriev SE, Andreev DE, Terenin IM, Olovnikov IA, Prassolov VS, et al. (2007) Efficient Translation Initiation Directed by the 900 Nucleotides-Long and GC-Rich 5′ UTR of the Human Retrotransposon LINE-1 mRNA is Strictly Cap-Dependent Rather Than IRES-Mediated. Mol Cell Biol 27: 4685–4697.
[45]  Ostertag EM, Prak ET, DeBerardinis RJ, Moran JV, Kazazian HH Jr (2000) Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res 28: 1418–1423.
[46]  Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, et al. (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33: D192–D196.
[47]  Sciamanna I, Landriscina M, Pittoggi C, Quirino M, Mearelli C, et al. (2005) Inhibition of endogenous reverse transcriptase antagonizes human tumor growth. Oncogene 24: 3923–3931.
[48]  Kubo S, Seleme MC, Soifer HS, Perez JL, Moran JV, et al. (2006) L1 retrotransposition in nondividing and primary human somatic cells. Proc Natl Acad Sci U S A 103: 8036–8041.
[49]  Jones RB, Garrison KE, Wong JC, Duan EH, Nixon DF, et al. (2008) Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PLoS ONE 3: e1547.
[50]  Martin SL, Bushman D, Wang F, Li PW, Walker A, et al. (2008) A single amino acid substitution in ORF1 dramatically decreases L1 retrotransposition and provides insight into nucleic acid chaperone activity. Nucleic Acids Res 36: 5845–5854.
[51]  Yang N, Zhang L, Zhang Y, Kazazian HH Jr (2003) An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res 31: 4929–4940.
[52]  Han JS, Boeke JD (2004) A highly active synthetic mammalian retrotransposon. Nature 429: 314–318.
[53]  Liu WM, Maraia RJ, Rubin CM, Schmid CW (1994) Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res 22: 1087–1095.
[54]  Shilatifard A, Conaway RC, Conaway JW (2003) The RNA polymerase II elongation complex. Annu Rev Biochem 72: 693–715.
[55]  Geiduschek EP, Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310: 1–26.
[56]  Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8: 113–126.
[57]  Pombo A, Jackson DA, Hollinshead M, Wang Z, Roeder RG, et al. (1999) Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III. EMBO J 18: 2241–2253.
[58]  Pombo A, Jones E, Iborra FJ, Kimura H, Sugaya K, et al. (2000) Specialized transcription factories within mammalian nuclei. Crit Rev Eukaryot Gene Expr 10: 21–29.
[59]  Ullu E, Weiner AM (1984) Human genes and pseudogenes for the 7SL RNA component of signal recognition particle. EMBO J 3: 3303–3310.
[60]  Kass DH, Kim J, Rao A, Deininger PL (1997) Evolution of B2 repeats: the muroid explosion. Genetica 99: 1–13.
[61]  Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, et al. (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16: 37–43.
[62]  Hulme AE, Bogerd HP, Cullen BR, Moran JV (2007) Selective inhibition of Alu retrotransposition by APOBEC3G. Gene 390: 199–205.
[63]  Goodier JL, Zhang L, Vetter MR, Kazazian HH Jr (2007) LINE-1 ORF1 Protein Localizes in Stress Granules with Other RNA-Binding Proteins, Including Components of RNA Interference RNA-Induced Silencing Complex. Mol Cell Biol 27: 6469–6483.
[64]  Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7: 529–539.
[65]  Dombroski BA, Scott AF, Kazazian HH Jr (1993) Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc Natl Acad Sci U S A 90: 6513–6517.
[66]  Wallace NA, Belancio VP, Deininger PL (2008) L1 mobile element expression causes multiple types of toxicity. Gene 419: 75–81.
[67]  Roy AM, West NC, Rao A, Adhikari P, Alemán C, et al. (2000) Upstream flanking sequences and transcription of SINEs. J Mol Biol 302: 17–25.
[68]  Roy-Engel AM, El Sawy M, Farooq L, Odom GL, Perepelitsa-Belancio V, et al. (2005) Human retroelements may introduce intragenic polyadenylation signals. Cytogenet Genome Res 110: 365–371.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133