[1] | Doval MD, Morono A, Pazos Y, Lopez A, Madrinán M, et al. (2006) Monitoring dissolved aromatic hydrocarbons in Rias Baixas embayments (NW Spain) after Prestige oil spills: relationship with hydrography. Est Coast Shelf Sci 67: 205–218.
|
[2] | De Flora S, Bagnasco M, Zanacchi P (1991) Genotoxic, carcinogenic and teratogenic hazards in the marine environment, with special reference to the Mediterranean Sea. Mutation Res Rev Gen Toxicol 258: 285–320.
|
[3] | Roemmich D, McGowan J (1995) Climatic warming and the decline of zooplankton in the California Current. Science 267: 1324–1326.
|
[4] | Johansson S, Larsson U, Boehm P (1980) The Tsesis oil spill. Impact on the pelagic ecosystem. Mar Poll Bull 11: 284–293.
|
[5] | Gajbhiye SN, Mustafa S, Mehta P, Nair VR (1995) Assessment of biological characteristics on coastal environment of Murud (Maharashtra) during the oil spill (17 May 1993). Indian J Mar Sci 24: 196–202.
|
[6] | Guzmán del Próo SA, Chávez EA, Alatriste FM, de la Campa S, De la Cruz G, et al. (1986) The impact of the Ixtoc-1 oil spill on zooplankton. J Plankton Res 8: 557–581.
|
[7] | Cowles TJ, Remillard JF (1983) Effects of exposure to sublethal concentrations of crude oil on the copepod Centropages hamatus. 1. Feeding and egg production. Mar Biol 78: 45–51.
|
[8] | Barata C, Baird DJ, Medina M, Albalat A, Soares AMVM (2002) Determining the ecotoxicological mode of action of toxic chemicals in meiobenthic marine organisms: stage-specific short tests with Tisbe battagliai. Mar Ecol Prog Ser 230: 183–194.
|
[9] | Calbet A, Saiz E, Barata C (2007) Lethal and sublethal effects of naphathalene and 1,2-dimethylnaphthalene on the marine copepod Paracartia grani. Mar Biol 151: 195–204.
|
[10] | Varela M, Bode A, Lorenzo J, álvarez-Ossorio MT, Miranda A, et al. (2006) The effect of the “Prestige”oil spill on the plankton of the N-NW Spanish coast. Mar Poll Bull 53: 272–286.
|
[11] | Doall MH, Colin SP, Strickler JR, Yen J (1998) Locating a mate in 3D: the case of Temora longicornis. Phil Trans R Soc Lond B 353: 681–689.
|
[12] | Bag?ien E, Ki?rboe T (2005) Blind dating-mate finding in planktonic copepods. I. Tracking the pheromone trail of Centropages typicus. Mar Ecol Prog Ser 300: 105–115.
|
[13] | Goetze E, Ki?rboe T (2008) Heterospecific mating and species recognition in the planktonic marine copepods Temora stylifera and T. longicornis. Mar Ecol Prog Ser 370: 185–198.
|
[14] | Yen J, Sehn JK, Catton K, Kramer A, Sarnelle O (2011) Pheromone trail following in three dimensions by the freshwater copepod Hesperodiaptomus shoshone. J Plankton Res 33: 907–916.
|
[15] | Seuront L, Leterme S (2007) Increased zooplankton behavioural stress in response to short-term exposure to hydrocarbon contamination. The Open Oceanography Journal 1: 1–7.
|
[16] | Seuront L (2010) Zooplankton avoidance as a response to point sources of hydrocarbon contaminated water. Mar Fresh Res 61: 263–270.
|
[17] | Boxshall GA (1998) Preface. Phil Trans R Soc Lond B 353: 669–670.
|
[18] | Razouls C, de Bovée F, Kouwenberg J, Desreumaux N (2005) Diversité et répartition géographique chez les copépodes planctoniques marins. Available: http://copepods.obs-banyuls.fr. Accessed 2011 September 28.
|
[19] | Daan R (1989) Factors controlling the summer development of the copepod populations in the Southern Bight of the North Sea. Neth J Sea Res 23: 305–322.
|
[20] | Seuront L (2005) First record of the calanoid copepod Acartia omorii (Copepoda: Calanoide: Acartiidae) in the southern bight of the North Sea. J Plankton Res 27: 1301–1306.
|
[21] | Dam HG, Peterson WT (1993) Seasonal contrasts in the diel vertical distribution, feeding behaviour and grazing impact of the copepod Temora longicornis. J Mar Res 51: 561–594.
|
[22] | Ringuette M, Castonguay M, Runge JA, Grégoire F (2002) Atlantic mackerel (Scomber scombrus) recruitment fluctuations in relation to copepod production and juvenile growth. Can J Fish Aquat Sci 59: 646–656.
|
[23] | Saeed T, Al-Mutairi M (1999) Chemical composition of the water-soluble fraction of the leaded gasolines in seawater. Environ Int 25: 117–129.
|
[24] | Elordui-Zapatarietxe S, Albaigé J, Rosell-Melé A (2008) Fast preparation of the seawater accomodated fraction of heavy oil by sonication. Chemosphere 73: 1811–1816.
|
[25] | Rodrigues RV, Miranda-Filho KC, Gusm?o EP, Moreira CB, Romano LA, et al. (2010) Deleterious effects of water-soluble fraction of petroleum, diesel and gasoline on marine pejerrey Odontesthes argentinensis larvae. Sci Tot Environ 408: 2054–2059.
|
[26] | Ohwada K, Nishimura M, Wada M, Nomura H, Shibata A, et al. (2003) Study of the effect of water-soluble fractions of heavy-oil on coastal marine organisms using enclosed ecosystems, mesocosms. Mar Poll Bull 47: 78–84.
|
[27] | Hashim AA (2010) Effect of sublethal concentrations of fuel oil on the behaviour and survival of larvae and adults of the barnacle Balanus amphitrite (Darwin). Turkish J Fish Aquat Sci 10: 499–503.
|
[28] | Carls MG, Rice SD (1990) Abnormal development and growth reductions of pollock, Theragra chalcogramma, embryos exposed to water soluble fraction of oil. Fish Bull 88: 29–37.
|
[29] | Corner EDS, Harris RP, Kilvington CC, O'Hara SCM (1976) Petroleum compounds in the marine food web: short-term experiments on the fate of naphthalene in Calanus. J Mar Biol Assoc UK 56: 121–133.
|
[30] | Albaigés J, Bayona JM, Fundación Santiago Rey Fernández-Latorre AC, Spain (ed) (2003) El fuel. la huella del fuel. Ensayos sobre el Prestige. A Coru?a. Spain.
|
[31] | Berdugo V, Harris RP, O'Hara SC (1977) The effect of petroleum hydrocarbons on reproduction of an estuarine planktonic copepod in laboratory cultures. Mar Poll Bull 8: 138–143.
|
[32] | Harris RP, Berdugo V, O'Hara SCM, Corner EDS (1977) Accumulation of 14C-1-Naphthalene by an oceanic and an estuarine copepod during long-term exposure to low-level concentrations. Mar Biol 42: 187–195.
|
[33] | Seuront L (2006) Effect of salinity on the swimming behaviour of the estuarine calanoid copepod Eurytemora affinis. J Plankton Res 28: 805–813.
|
[34] | Seuront L (2011) Behavioral fractality in marine copepods: endogenous rhythms versus exogenous stressors. Physica A 390: 250–256.
|
[35] | Seuront L, Hwang JS, Tseng LC, Schmitt FG, Souissi S, et al. (2004) Individual variability in the swimming behavior of the tropical copepod Oncaea venusta (Copepoda: Poecilostomatoida). Mar Ecol Prog Ser 283: 199–217.
|
[36] | Seuront L, Yamazaki H, Souissi S (2004) Hydrodynamic disturbance and zooplankton swimming behaviour. Zool Stud 43: 377–388.
|
[37] | Weissburg MJ, Doall MH, Yen J (1998) Following the invisible trail: kinematic analysis of mate-tracking in the copepod Temora longicornis. Phil Trans R Soc Lond B 353: 701–712.
|
[38] | Yen J, Doall MH, Weissburg MJ (1998) The fluid physics of signal perception by mate-tracking copepods. Phil Trans R Soc Lond B 353: 787–804.
|
[39] | Yen J, Prusak A, Caun M, Doall MH, Brown J, Strickler JR (2004) Signaling during mating in the pelagic copepod, Temora longicornis. In: Seuront L, Strutton PG, editors. Handbook of scaling methods in aquatic ecology: measurements, analysis, simulation. CRC Press, Boca Raton. pp. 149–159.
|
[40] | Seuront L, Vincent D (2008) Impact of a Phaeocystis globosa spring bloom on Temora longicornis feeding and swimming behaviours. Mar Ecol Prog Ser 363: 131–145.
|
[41] | Seuront L (2010) Fractals and multifractals in ecology and aquatic science. CRC Press, Boca Raton. 344 p.
|
[42] | Coughlin DJ, Strickler JR, Sanderson B (1992) Swimming and search behaviour in clownfish, Amphiprion perideraion, larvae. Anim Behav 44: 427–440.
|
[43] | Bundy MH, Gross TF, Coughlin DJ, Strickler JR (1993) Quantifying copepod searching efficiency using swimming pattern and perceptive ability. Bull Mar Sci 53: 15–28.
|
[44] | Dowling NA, Hall SJ, Mitchell JG (2000) Foraging kinematics of barramundi during early stages of development. J Fish Biol 57: 337–353.
|
[45] | Uttieri M, Zambianchi E, Strickler JR, Mazzocchi MG (2005) Fractal characterization of three-dimensional zooplankton swimming trajectories. Ecol Model 185: 51–63.
|
[46] | Uttieri M, Nihongi A, Mazzocchi MG, Strickler JR, Zambianchi E (2007) Pre-copulatory swimming behaviour of Leptodiaptomus ashlandi (Copepoda: Calanoida): a fractal approach. J Plankton Res 29: i17–i26.
|
[47] | Uttieri M, Paffenh?fer GA, Mazzocchi MG (2008) Prey capture in Clausocalanus (Copepoda: Calanoida). The role of swimming behaviour. Mar Biol 153: 925–935.
|
[48] | Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York. 399 p.
|
[49] | Zar JH (2009) Biostatistical analysis. Prentice Hall, Upper Saddle River, NJ. 960 p.
|
[50] | Venkateswara Rao J, Kavitha P, Jakka NM, Sridhar V, Usman PK (2007) Toxicity of organophsphates on morphology and locomotor behavior in brine shrimp, Artemia salina. Arch Environ Contam Tox 53: 227–232.
|
[51] | Amsler MO, Amsler CD, Rittschoff D, Becerro MA, Mc Clintock JB (2006) The use of computer-assisted motion analysis for quantitative studies of the behaviour of barnacle (Balanus amphitrite) larvae. Mar Freshw Behav Physiol 39: 259–268.
|
[52] | Faimali M, Magillo F, Piazza V, Garaventa F, Geraci S (2002) A simple toxicological bioassay using phototactic behaviour of Balanus amphitrite (Darwin) nauplii: role of some cultural parameters and application with experimental biocides. Period Biol 104: 225–232.
|
[53] | Faimali M, Garaventa F, Piazza V, Greco G, Corra C, et al. (2006) Swimming speed alteration of larvae of Balanus amphitrite (Darwin) as a behavioural end-point toxicological bioassays. Mar Biol 149: 87–96.
|
[54] | Charoy C, Janssen CR (1999) The swimming behaviour of Brachionus calyciflorus (rotifer) under toxic stress. II. Comparative sensitivity of various behavioural criteria. Chemosphere 38: 3247–3260.
|
[55] | Charoy CP, Janssen CR, Persoone G, Clément P (1995) The swimming behaviour of Brachionus calyciflorus (rotifer) under toxic stress. I. The use of automated trajectory for determining sublethal effects of chemicals. Aquat Toxicol 32: 271–282.
|
[56] | Janssen CR, Ferrando MD, Persoone G (1994) Ecotoxicological studies with the freshwater rotifer Brachionus calcyflorus. 4. Rotifer behavior as a sensitive and rapid sublethal test criterion. Ecotoxicol Environ 28: 244–255.
|
[57] | Baillieul M, Blust R (1999) Analysis of the swimming velocity of cadmium-stressed Daphnia magna. Aquat Toxicol 44: 245–254.
|
[58] | Shimizu N, Ogino C, Kawanishi T, Hayashi Y (2002) Fractal analysis of Daphnia motion for acute toxicity bioassay. Environ Toxicol 17: 441–448.
|
[59] | Untersteiner H, Kahapka J, Kaiser H (2003) Behavioural response of the cladoceran Daphnia magna Straus to sublethal copper stress - validation by image analysis. Aquat Toxicol 65: 435–442.
|
[60] | Goto T, Hiromi J (2003) Toxiciy of 17a-ethynylestradiol and norethindrone, constituents of any oral contraceptive pill to the swimming and reproduction of cladoceran Daphnia magna, with special reference to their synergetic effect. Mar Poll Bull 47: 139–142.
|
[61] | Gerhardt A, Janssens de Bisthoven L, Soares AMV (2005) Evidence for the stepwise stress model: Gambusia holbrooki and Daphnia magna under acid mine drainage and acidified reference water stress. Environ Sci Technol 39: 4150–4158.
|
[62] | Duquesne S, Küster E (2010) Biochemical, metabolic, and behavioural responses and recovery of Daphnia magna after exposure to an organophosphate. Ecotoxicol Environ 73: 353–359.
|
[63] | Untersteiner H, Gretschel G, Puchner T, Napetschnig S, Kaiser H (2005) Monitoring behavioural responses to the heavy metal cadmium in the marine shrimp Hippolyte inermis leach (Crustacea: Decapoda) with video imaging. Zool Stud 44: 71–80.
|
[64] | Sullivan BK, Buskey E, Miller DC, Ritacco PJ (1983) Effects of copper and cadmium on growth, swimming and predator avoidance in Eurytemora affinis (Copepoda). Mar Biol 77: 299–306.
|
[65] | Cailleaud K, Michalec FG, Forget-Leray J, Budzinski H, Hwang JS, et al. (2011) Changes in the swimming behavior of Eurytemora affinis (Copepoda, Calanoida) in response to a sub-lethal exposure to nonyphenolds. Aquat Toxicol 102: 228–231.
|
[66] | Woodson CB, Webster DR, Weissburg MJ, Yen J (2005) Response of copepods to physical gradients associated with structure in the ocean. Limnol Oceanogr 50: 1552–1564.
|
[67] | Woodson CB, Weissburg MJ, Yen J (2007) Cue hierarchy and foraging in calanoid copepods: ecological implications of oceanographic structure. Mar Ecol Prog Ser 330: 163–177.
|
[68] | Woodson CB, Webster DR, Weissburg MJ, Yen J (2008) The prevalence and implications of copepod behavioral responses to oceanographic gradients and biological patchiness. Integr Comp Biol 47: 831–846.
|
[69] | Garaventa F, Gambardella C, Di Fino A, Pittore M, Faimali M (2010) Swimming speed alteration of Artemia sp. and Brachionus plicatilis as a sub-lethal behavioural end-point for ecotoxicological surveys. Ecotoxicol 19: 512–519.
|
[70] | Escós J, Alados CL, Emlen JM (1995) Fractal structures and fractal functions as disease indicators. Oikos 74: 310–314.
|
[71] | Alados CL, Huffman MA (2000) Fractal long-range correlations in behavioural sequences of wild chimpanzees: a non-invasive analytical tool for the evaluation of health. Ethology 106: 105–116.
|
[72] | Rutherford KMD, Haskell MJ, Glasbey C, Jones RB, Laurence AB (2004) Fractal analysis of animal behavior as an indicator of animal welfare. Animal Welfare 13: 99–103.
|
[73] | Rutherford KMD, Haskell MJ, Glasbey C, Jones RB, Laurence AB (2003) Detrended fluctuation analysis of behavioural responses to mild acute stressors in domestic hens. Appl Anim Behav Sci 83: 125–139.
|
[74] | María GA, Escós J, Alados CL (2004) Complexity of behavioural sequences and their relation to stress conditions in chickens (Gallus gallus domesticus): a non-invasive technique to evaluate animal welfare. Appl Anim Behav Sci 86: 93–104.
|
[75] | Seuront L, Cribb N (2011) Fractal analysis reveals pernicious stress levels related to boat presence and type in the Indo–Pacific bottlenose dolphin, Tursiops aduncus. Physica A 390: 2333–2339.
|
[76] | Motohashi Y, Miyazaki Y, Takano T (1993) Assessment of behavioural effects of tetrachloroethylene using a set of time-series analyses. Neurotoxicol Teratol 15: 3–10.
|
[77] | Alados CL, Weber D (1990) Lead effects on the predictability of reproductive behaviour in fathead minnows (Pimephales promelas): a mathematical model. Environ Toxicol Chem 18: 2392–2399.
|
[78] | Pope C, Karanth S, Liu J (2005) Pharmacology and toxicology of cholinesterase inhibitors, uses and misuses of acommonmechanism of action. Environ Toxicol Pharmacol 19: 433–446.
|
[79] | Togo F, Yamamoto Y (2000) Decreased fractal component of human heart rate variability during non-REM sleep. Am J Physiol Circ Physiol 280: H17–H20.
|
[80] | Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PCh, Peng CK, et al. (2002) Fractal dynamics in physiology: alterations with desease and aging. Proc Nat Acad Sci U S A 99: 2466–2472.
|
[81] | West BJ, Scafetta N (2003) Nonlinear dynamical model of human gait. Phys Rev E 67: 051917.
|
[82] | Gerritsen J, Strickler JR (1977) Encounter probabilities and community structure in zooplankton: a mathematical model. J Fish Res Bd Can 34: 73–82.
|
[83] | Uttieri M, Cianelli D, Strickler JR, Zambianchi E (2007) On the relationship between fractal dimension and encounters in three-dimensional trajectories. J Theor Biol 247: 480–491.
|
[84] | Ki?rboe T (2007) Mate finding, mating, and population dynamics in a planktonic copepod Oithona davisae: there are too few males. Limnol Oceanogr 52: 1511–1522.
|
[85] | Visser AW, Ki?rboe T (2006) Plankton motility patterns and encounter rates. Oecologia 148: 538–546.
|
[86] | Ki?rboe T (2008) Optimal swimming strategies in mate-searching pelagic copepods. Oecologia 155: 179–192.
|