The rising epidemic of diabetes imposes a substantial economic burden on the Middle East. Using baseline data from a population based cohort study, we aimed to identify the correlates of diabetes mellitus (DM) in a mainly rural population from Iran. Between 2004 and 2007, 50044 adults between 30 and 87 years old from Golestan Province located in Northeast Iran were enrolled in the Golestan Cohort Study. Demographic and health-related information was collected using questionnaires. Individuals' body sizes at ages 15 and 30 were assessed by validated pictograms ranging from 1 (very lean) to 7 in men and 9 in women. DM diagnosis was based on the self-report of a physician's diagnosis. The accuracy of self-reported DM was evaluated in a subcohort of 3811 individuals using fasting plasma glucose level and medical records. Poisson regression with robust variance estimator was used to estimate prevalence ratios (PR's). The prevalence of self-reported DM standardized to the national and world population was 5.7% and 6.2%, respectively. Self-reported DM had 61.5% sensitivity and 97.6% specificity. Socioeconomic status was inversely associated with DM prevalence. Green tea and opium consumption increased the prevalence of DM. Obesity at all ages and extreme leanness in childhood increased diabetes prevalence. Being obese throughout life doubled DM prevalence in women (PR: 2.1; 95% CI: 1.8, 2.4). These findings emphasize the importance of improving DM awareness, improving general living conditions, and early lifestyle modifications in diabetes prevention.
References
[1]
WHO (2005) Preventing chronic diseases: A vital investment. WHO global report. World Health Organization.
[2]
Roglic G, Unwin N, Bennett PH, Mathers C, Tuomilehto J, et al. (2005) The burden of mortality attributable to diabetes: Realistic estimates for the year 2000. Diabetes Care 28(9): 2130–2135.
[3]
Anonymous (2009) The global burden. 2010 Aug 8.
[4]
Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 27(5): 1047–1053.
[5]
Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1): 4–14.
[6]
Esteghamati A, Khalilzadeh O, Anvari M, Meysamie A, Abbasi M, et al. (2009) The economic costs of diabetes: A population-based study in tehran, iran. Diabetologia 52(8): 1520–1527.
[7]
Sajjadi F, Mohammadifard N, Kelishadi R, Ghaderian N, Alikhasi H, et al. (2008) Clustering of coronary artery disease risk factors in patients with type 2 diabetes and impaired glucose tolerance. East Mediterr Health J 14(5): 1080–1089.
[8]
Harati H, Hadaegh F, Saadat N, Azizi F (2009) Population-based incidence of type 2 diabetes and its associated risk factors: Results from a six-year cohort study in iran. BMC Public Health 9: 186.
[9]
Bahrami H, Sadatsafavi M, Pourshams A, Kamangar F, Nouraei M, et al. (2006) Obesity and hypertension in an iranian cohort study; iranian women experience higher rates of obesity and hypertension than american women. BMC Public Health 6: 158.
[10]
Islami F, Kamangar F, Aghcheli K, Fahimi S, Semnani S, et al. (2004) Epidemiologic features of upper gastrointestinal tract cancers in northeastern iran. Br J Cancer 90(7): 1402–1406.
[11]
Pourshams A, Khademi H, Malekshah AF, Islami F, Nouraei M, et al. (2010) Cohort profile: The golestan cohort study–a prospective study of oesophageal cancer in northern iran. Int J Epidemiol 39(1): 52–59.
[12]
Islami F, Kamangar F, Nasrollahzadeh D, Aghcheli K, Sotoudeh M, et al. (2009) Socio-economic status and oesophageal cancer: Results from a population-based case-control study in a high-risk area. Int J Epidemiol 38(4): 978–988.
[13]
Abnet CC, Saadatian-Elahi M, Pourshams A, Boffetta P, Feizzadeh A, et al. (2004) Reliability and validity of opiate use self-report in a population at high risk for esophageal cancer in golestan, iran. Cancer Epidemiol Biomarkers Prev 13(6): 1068–1070.
[14]
Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, et al. (2003) Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42(6): 1206–1252.
[15]
WHO (1995) Physical status: The use and interpretation of anthropometry. report of a WHO expert committee. World Health Organization.
[16]
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation 106(25): 3143–3421.
[17]
Stunkard AJ, Sorensen T, Schulsinger F (1983) Use of the danish adoption register for the study of obesity and thinness. Res Publ Assoc Res Nerv Ment Dis 60: 115–120.
[18]
Keshtkar AA, Semnani S, Pourshams A, Khademi H, Roshandel G, et al. (2010) Pictogram use was validated for estimating individual's body mass index. J Clin Epidemiol 63(6): 655–659.
[19]
American Diabetes Association (2004) Diagnosis and classification of diabetes mellitus. Diabetes Care 27: Suppl 1S5–S10.
[20]
Ahmad O, Boschi-Pinto C, Lopez A, Murray C, Lozano R, et al. (2001) Age standardization of rates: A new WHO standard. World Health Organization: Geneva.
[21]
AnonymousStatistical center of iran. 2010 Oct 27.
[22]
Barros AJ, Hirakata VN (2003) Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol 3: 21.
[23]
Esteghamati A, Meysamie A, Khalilzadeh O, Rashidi A, Haghazali M, et al. (2009) Third national surveillance of risk factors of non-communicable diseases (SuRFNCD-2007) in iran: Methods and results on prevalence of diabetes, hypertension, obesity, central obesity, and dyslipidemia. BMC Public Health 9: 167.
[24]
Amini M, Janghorbani M (2007) Diabetes and impaired glucose regulation in first-degree relatives of patients with type 2 diabetes in isfahan, iran: Prevalence and risk factors. Rev Diabet Stud 4(3): 169–176.
[25]
Azimi-Nezhad M, Ghayour-Mobarhan M, Parizadeh MR, Safarian M, Esmaeili H, et al. (2008) Prevalence of type 2 diabetes mellitus in iran and its relationship with gender, urbanisation, education, marital status and occupation. Singapore Med J 49(7): 571–576.
[26]
Sadeghi M, Roohafza H, Shirani S, Poormoghadas M, Kelishadi R, et al. (2007) Diabetes and associated cardiovascular risk factors in iran: The isfahan healthy heart programme. Ann Acad Med Singapore 36(3): 175–180.
[27]
Esteghamati A, Gouya MM, Abbasi M, Delavari A, Alikhani S, et al. (2008) Prevalence of diabetes and impaired fasting glucose in the adult population of iran: National survey of risk factors for non-communicable diseases of iran. Diabetes Care 31(1): 96–98.
[28]
Hadaegh F, Zabetian A, Harati H, Azizi F (2007) The prospective association of general and central obesity variables with incident type 2 diabetes in adults, tehran lipid and glucose study. Diabetes Res Clin Pract 76(3): 449–454.
[29]
van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B (2010) The global burden of diabetes and its complications: An emerging pandemic. Eur J Cardiovasc Prev Rehabil 17: Suppl 1S3–8.
[30]
Robbins JM, Vaccarino V, Zhang H, Kasl SV (2001) Socioeconomic status and type 2 diabetes in african american and non-hispanic white women and men: Evidence from the third national health and nutrition examination survey. Am J Public Health 91(1): 76–83.
[31]
Rabi DM, Edwards AL, Southern DA, Svenson LW, Sargious PM, et al. (2006) Association of socio-economic status with diabetes prevalence and utilization of diabetes care services. BMC Health Serv Res 6: 124.
[32]
Chaturvedi N (2004) Commentary: Socioeconomic status and diabetes outcomes; what might we expect and why don't we find it? Int J Epidemiol 33(4): 871–873.
[33]
Vuong C, Van Uum SH, O'Dell LE, Lutfy K, Friedman TC (2010) The effects of opioids and opioid analogs on animal and human endocrine systems. Endocr Rev 31(1): 98–132.
[34]
Huxley R, Lee CM, Barzi F, Timmermeister L, Czernichow S, et al. (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: A systematic review with meta-analysis. Arch Intern Med 169(22): 2053–2063.
[35]
Tsuneki H, Ishizuka M, Terasawa M, Wu JB, Sasaoka T, et al. (2004) Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol 4: 18.
[36]
Venables MC, Hulston CJ, Cox HR, Jeukendrup AE (2008) Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am J Clin Nutr 87(3): 778–784.
[37]
Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, et al. (2006) Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr 136(10): 2512–2518.
[38]
Sabu MC, Smitha K, Kuttan R (2002) Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J Ethnopharmacol 83(1–2): 109–116.
[39]
Hosseinpanah F, Rambod M, Azizi F (2007) Population attributable risk for diabetes associated with excess weight in tehranian adults: A population-based cohort study. BMC Public Health 7: 328.
[40]
Blaha MJ, Gebretsadik T, Shintani A, Elasy TA (2008) Waist circumference, not the metabolic syndrome, predicts glucose deterioration in type 2 diabetes. Obesity (Silver Spring) 16(4): 869–874.
[41]
Misra A, Wasir JS, Vikram NK (2005) Waist circumference criteria for the diagnosis of abdominal obesity are not applicable uniformly to all populations and ethnic groups. Nutrition 21(9): 969–976.
[42]
Misra A, Khurana L (2008) Obesity and the metabolic syndrome in developing countries. J Clin Endocrinol Metab 93: 11 Suppl 1S9–30.
[43]
Mirmiran P, Esmaillzadeh A, Azizi F (2004) Detection of cardiovascular risk factors by anthropometric measures in tehranian adults: Receiver operating characteristic (ROC) curve analysis. Eur J Clin Nutr 58(8): 1110–1118.
[44]
Caballero B (2005) A nutrition paradox–underweight and obesity in developing countries. N Engl J Med 352(15): 1514–1516.
[45]
Robinson R (2001) The fetal origins of adult disease. BMJ 322(7283): 375–376.
[46]
McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Knowler WC, et al. (1994) Birth weight and non-insulin dependent diabetes: Thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ 308(6934): 942–945.
[47]
Leger J, Levy-Marchal C, Bloch J, Pinet A, Chevenne D, et al. (1997) Reduced final height and indications for insulin resistance in 20 year olds born small for gestational age: Regional cohort study. BMJ 315(7104): 341–347.
[48]
Phipps K, Barker DJ, Hales CN, Fall CH, Osmond C, et al. (1993) Fetal growth and impaired glucose tolerance in men and women. Diabetologia 36(3): 225–228.
[49]
Kuh D, Hardy R, Chaturvedi N, Wadsworth ME (2002) Birth weight, childhood growth and abdominal obesity in adult life. Int J Obes Relat Metab Disord 26(1): 40–47.
[50]
Chiarelli F, di Ricco L, Mohn A, De Martino M, Verrotti A (1999) Insulin resistance in short children with intrauterine growth retardation. Acta Paediatr Suppl 88(428): 62–65.
[51]
de Lauzon-Guillain B, Balkau B, Charles MA, Romieu I, Boutron-Ruault MC, et al. (2010) Birth weight, body silhouette over the life course, and incident diabetes in 91,453 middle-aged women from the french etude epidemiologique de femmes de la mutuelle generale de l'education nationale (E3N) cohort. Diabetes Care 33(2): 298–303.
[52]
Yeung EH, Zhang C, Louis GM, Willett WC, Hu FB (2010) Childhood size and life course weight characteristics in association with the risk of incident type 2 diabetes. Diabetes Care 33(6): 1364–1369.
[53]
Okura Y, Urban LH, Mahoney DW, Jacobsen SJ, Rodeheffer RJ (2004) Agreement between self-report questionnaires and medical record data was substantial for diabetes, hypertension, myocardial infarction and stroke but not for heart failure. J Clin Epidemiol 57(10): 1096–1103.
[54]
Must A, Willett WC, Dietz WH (1993) Remote recall of childhood height, weight, and body build by elderly subjects. Am J Epidemiol 138(1): 56–64.
[55]
Axelson O, Fredriksson M, Ekberg K (1994) Use of the prevalence ratio v the prevalence odds ratio as a measure of risk in cross sectional studies. Occup Environ Med 51(8): 574.