全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

DeltaNp63alpha-Mediated Induction of Epidermal Growth Factor Receptor Promotes Pancreatic Cancer Cell Growth and Chemoresistance

DOI: 10.1371/journal.pone.0026815

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to current chemotherapy regimens, in part due to alterations in the p53 tumor suppressor pathway. p53 homolog p63 is a transcription factor essential for the development and differentiation of epithelial surfaces. However its function in cancer is controversial and its role in PDAC is not known. We discovered that ΔNp63α was the predominantly expressed p63 variant in pancreatic cancer cell lines. ΔNp63α protein and mRNA levels were high in T3M4, BxPC3 and COLO-357 pancreatic cancer cells and low in ASPC-1 and PANC-1 cells. Overexpression of ΔNp63α in PANC-1 cells and shRNA-mediated knockdown in T3M4 cells indicated that ΔNp63α promoted anchorage-dependent and -independent growth, motility and invasion, and enhanced resistance to cisplatin-induced apoptosis. Epidermal growth factor receptor (EGFR) signaling pathways contribute to the biological aggressiveness of PDAC, and we found that the motogenic effects of ΔNp63α were augmented in presence of EGF. Ectopic expression of ΔNp63α resulted in upregulation of EGFR and β1-integrin in PANC-1 cells. Conversely, ΔNp63α knockdown had an opposite effect in T3M4 cells. ΔNp63α potentiated EGF-mediated activation of ERK, Akt and JNK signaling. Chromatin immunoprecipitation and functional reporter assays demonstrated that ΔNp63α activated EGFR transcription. 14-3-3σ transcription was also positively regulated by ΔNp63α and we have previously shown that 14-3-3σ contributes to chemoresistance in pancreatic cancer cell lines. Conversely, shRNA-mediated knockdown of 14-3-3σ led to abrogation of the ΔNp63α effects on cell proliferation and invasion. Thus, p53 homolog ΔNp63α enhances the oncogenic potential of pancreatic cancer cells through trans-activation of EGFR and 14-3-3σ.

References

[1]  Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10: 789–799.
[2]  Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362: 1605–1617.
[3]  Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, et al. (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7: 469–483.
[4]  Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, et al. (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17: 3112–3126.
[5]  Deyoung MP, Ellisen LW (2007) p63 and p73 in human cancer: defining the network. Oncogene 26: 5169–5183.
[6]  Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW (2007) The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 117: 1370–1380.
[7]  Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW (2006) p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9: 45–56.
[8]  Fukushima H, Koga F, Kawakami S, Fujii Y, Yoshida S, et al. (2009) Loss of DeltaNp63alpha promotes invasion of urothelial carcinomas via N-cadherin/Src homology and collagen/extracellular signal-regulated kinase pathway. Cancer Res 69: 9263–9270.
[9]  Harmes DC, Bresnick E, Lubin EA, Watson JK, Heim KE, et al. (2003) Positive and negative regulation of deltaN-p63 promoter activity by p53 and deltaN-p63-alpha contributes to differential regulation of p53 target genes. Oncogene 22: 7607–7616.
[10]  Bheda A, Creek KE, Pirisi L (2008) Loss of p53 induces epidermal growth factor receptor promoter activity in normal human keratinocytes. Oncogene 27: 4315–4323.
[11]  Neupane D, Korc M (2008) 14-3-3sigma Modulates pancreatic cancer cell survival and invasiveness. Clin Cancer Res 14: 7614–7623.
[12]  Nylander K, Vojtesek B, Nenutil R, Lindgren B, Roos G, et al. (2002) Differential expression of p63 isoforms in normal tissues and neoplastic cells. J Pathol 198: 417–427.
[13]  Li N, Li H, Cherukuri P, Farzan S, Harmes DC, et al. (2006) TA-p63-gamma regulates expression of DeltaN-p63 in a manner that is sensitive to p53. Oncogene 25: 2349–2359.
[14]  Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y, et al. (1999) Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 274: 7611–7614.
[15]  Carroll DK, Carroll JS, Leong CO, Cheng F, Brown M, et al. (2006) p63 regulates an adhesion programme and cell survival in epithelial cells. Nat Cell Biol 8: 551–561.
[16]  Baldwin RL, Korc M (1993) Growth inhibition of human pancreatic carcinoma cells by transforming growth factor beta-1. Growth Factors 8: 23–34.
[17]  Schavolt KL, Pietenpol JA (2007) p53 and Delta Np63 alpha differentially bind and regulate target genes involved in cell cycle arrest, DNA repair and apoptosis. Oncogene 26: 6125–6132.
[18]  Helton ES, Zhu J, Chen X (2006) The unique NH2-terminally deleted (DeltaN) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the DeltaN variant of p63. J Biol Chem 281: 2533–2542.
[19]  Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, et al. (2000) AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci U S A 97: 5462–5467.
[20]  Boldrup L, Coates PJ, Gu X, Nylander K (2009) DeltaNp63 isoforms differentially regulate gene expression in squamous cell carcinoma: identification of Cox-2 as a novel p63 target. J Pathol 218: 428–436.
[21]  Yamanaka Y, Friess H, Kobrin MS, Buchler M, Beger HG, et al. (1993) Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res 13: 565–569.
[22]  Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchier M, et al. (1992) Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest 90: 1352–1360.
[23]  Fujita H, Ohuchida K, Mizumoto K, Itaba S, Ito T, et al. (2011) High EGFR mRNA expression is a prognostic factor for reduced survival in pancreatic cancer after gemcitabine-based adjuvant chemotherapy. Int J Oncol 38: 629–641.
[24]  Chatterjee A, Chang X, Sen T, Ravi R, Bedi A, et al. (2010) Regulation of p53 family member isoform DeltaNp63alpha by the nuclear factor-kappaB targeting kinase IkappaB kinase beta. Cancer Res 70: 1419–1429.
[25]  Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA (2003) The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol 23: 2264–2276.
[26]  Flaman JM, Robert V, Lenglet S, Moreau V, Iggo R, et al. (1998) Identification of human p53 mutations with differential effects on the bax and p21 promoters using functional assays in yeast. Oncogene 16: 1369–1372.
[27]  Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, et al. (1998) p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2: 305–316.
[28]  Nishi H, Senoo M, Nishi KH, Murphy B, Rikiyama T, et al. (2001) p53 Homologue p63 represses epidermal growth factor receptor expression. J Biol Chem 276: 41717–41724.
[29]  Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT, et al. (2003) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162: 1151–1162.
[30]  Muller PA, Vousden KH, Norman JC (2011) p53 and its mutants in tumor cell migration and invasion. J Cell Biol 192: 209–218.
[31]  Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, et al. (2006) Expression of the p53 family in lung cancer. Anticancer Res 26: 1785–1790.
[32]  McDade SS, Patel D, McCance DJ (2011) p63 maintains keratinocyte proliferative capacity through regulation of Skp2-p130 levels. J Cell Sci 124: 1635–1643.
[33]  Lefkimmiatis K, Caratozzolo MF, Merlo P, D'Erchia AM, Navarro B, et al. (2009) p73 and p63 sustain cellular growth by transcriptional activation of cell cycle progression genes. Cancer Res 69: 8563–8571.
[34]  Barbieri CE, Tang LJ, Brown KA, Pietenpol JA (2006) Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res 66: 7589–7597.
[35]  Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, et al. (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398: 708–713.
[36]  Su X, Chakravarti D, Cho MS, Liu L, Gi YJ, et al. (2010) TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467: 986–990.
[37]  Guo X, Keyes WM, Papazoglu C, Zuber J, Li W, et al. (2009) TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol 11: 1451–1457.
[38]  Keyes WM, Pecoraro M, Aranda V, Vernersson-Lindahl E, Li W, et al. (2011) DeltaNp63alpha Is an Oncogene that Targets Chromatin Remodeler Lsh to Drive Skin Stem Cell Proliferation and Tumorigenesis. Cell Stem Cell 8: 164–176.
[39]  Dohn M, Zhang S, Chen X (2001) p63alpha and DeltaNp63alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene 20: 3193–3205.
[40]  Preis M, Korc M (2010) Kinase signaling pathways as targets for intervention in pancreatic cancer. Cancer Biol Ther 9:
[41]  Kopp R, Ruge M, Rothbauer E, Cramer C, Kraemling HJ, et al. (2002) Impact of epidermal growth factor (EGF) radioreceptor analysis on long-term survival of gastric cancer patients. Anticancer Res 22: 1161–1167.
[42]  Matsuda K, Idezawa T, You XJ, Kothari NH, Fan H, et al. (2002) Multiple mitogenic pathways in pancreatic cancer cells are blocked by a truncated epidermal growth factor receptor. Cancer Res 62: 5611–5617.
[43]  Bost F, McKay R, Bost M, Potapova O, Dean NM, et al. (1999) The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol 19: 1938–1949.
[44]  Philip PA, Benedetti J, Corless CL, Wong R, O'Reilly EM, et al. (2010) Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J Clin Oncol 28: 3605–3610.
[45]  Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, et al. (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25: 1960–1966.
[46]  Wu G, Osada M, Guo Z, Fomenkov A, Begum S, et al. (2005) DeltaNp63alpha up-regulates the Hsp70 gene in human cancer. Cancer Res 65: 758–766.
[47]  Lin YL, Sengupta S, Gurdziel K, Bell GW, Jacks T, et al. (2009) p63 and p73 transcriptionally regulate genes involved in DNA repair. PLoS Genet 5: e1000680.
[48]  Biliran H Jr, Wang Y, Banerjee S, Xu H, Heng H, et al. (2005) Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res 11: 6075–6086.
[49]  Noma B, Sasaki T, Fujimoto Y, Serikawa M, Kobayashi K, et al. (2008) Expression of multidrug resistance-associated protein 2 is involved in chemotherapy resistance in human pancreatic cancer. Int J Oncol 33: 1187–1194.
[50]  Sen T, Sen N, Brait M, Begum S, Chatterjee A, et al. (2011) DeltaNp63alpha confers tumor cell resistance to cisplatin through the AKT1 transcriptional regulation. Cancer Res 71: 1167–1176.
[51]  Grzesiak JJ, Ho JC, Moossa AR, Bouvet M (2007) The integrin-extracellular matrix axis in pancreatic cancer. Pancreas 35: 293–301.
[52]  Bill HM, Knudsen B, Moores SL, Muthuswamy SK, Rao VR, et al. (2004) Epidermal growth factor receptor-dependent regulation of integrin-mediated signaling and cell cycle entry in epithelial cells. Mol Cell Biol 24: 8586–8599.
[53]  Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10: 9–22.
[54]  Ricono JM, Huang M, Barnes LA, Lau SK, Weis SM, et al. (2009) Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res 69: 1383–1391.
[55]  Ju L, Zhou C, Li W, Yan L (2010) Integrin beta1 over-expression associates with resistance to tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. J Cell Biochem 111: 1565–1574.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133