[1] | Carey M, Smale ST (1999) Transcriptional Regulation in Eukaryotes: Concepts, Strategies, and Techniques. Cold Spring Harbor: Cold Spring Harbor Laboratory.
|
[2] | Friberg MT (2007) Prediction of transcription factor binding sites using ChIP-chip and phylogenetic footprinting data. J Bioinform Comput Biol 5: 105–116.
|
[3] | Reddy TE, DeLisi C, Shakhnovich BE (2007) Binding site graphs: a new graph theoretical framework for prediction of transcription factor binding sites. PLoS Comput Biol 3: e90.
|
[4] | Pape UJ, Grossmann S, Hammer S, Sperling S, Vingron M (2006) A new statistical model to select target sequences bound by transcription factors. Genome Inform 17: 134–140.
|
[5] | Dai X, He J, Zhao X (2007) A new systematic computational approach to predicting target genes of transcription factors. Nucleic Acids Res.
|
[6] | Chen Y, Blackwell TW, Chen J, Gao J, Lee AW, et al. (2007) Integration of genome and chromatin structure with gene expression profiles to predict c-MYC recognition site binding and function. PLoS Comput Biol 3: e63.
|
[7] | Ananko EA, Kondrakhin YV, Merkulova TI, Kolchanov NA (2007) Recognition of interferon-inducible sites, promoters, and enhancers. BMC Bioinformatics 8: 56.
|
[8] | Stepanova M, Lin F, Lin VC (2006) In silico modelling of hormone response elements. BMC Bioinformatics 7: Suppl 4S27.
|
[9] | Gibson G, Weir B (2005) The quantitative genetics of transcription. Trends Genet 21: 616–623.
|
[10] | Carroll SBGJK, Weatherbee SD (2001) From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Malden, MA: Blackwell Science.
|
[11] | Maerkl SJ, Quake SR (2007) A systems approach to measuring the binding energy landscapes of transcription factors. Science 315: 233–237.
|
[12] | Zykovich A, Korf I, Segal DJ (2009) Bind-n-Seq: high-throughput analysis of in vitro protein-DNA interactions using massively parallel sequencing. Nucleic Acids Res 37: e151.
|
[13] | Zhao Y, Granas D, Stormo GD (2009) Inferring binding energies from selected binding sites. PLoS Comput Biol 5: e1000590.
|
[14] | Lassig M (2007) From biophysics to evolutionary genetics: statistical aspects of gene regulation. BMC Bioinformatics 8: Suppl 6S7.
|
[15] | Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP, et al. (2007) Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet 3: 1702–1708.
|
[16] | Warren LA, Rossi DJ, Schiebinger GR, Weissman IL, Kim SK, et al. (2007) Transcriptional instability is not a universal attribute of aging. Aging Cell 6: 775–782.
|
[17] | Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, et al. (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A 104: 11889–11894.
|
[18] | Choi Y, Qin Y, Berger MF, Ballow DJ, Bulyk ML, et al. (2007) Microarray analyses of newborn mouse ovaries lacking Nobox. Biol Reprod 77: 312–319.
|
[19] | McCord RP, Berger MF, Philippakis AA, Bulyk ML (2007) Inferring condition-specific transcription factor function from DNA binding and gene expression data. Mol Syst Biol 3: 100.
|
[20] | Bulyk ML (2007) Protein binding microarrays for the characterization of DNA-protein interactions. Adv Biochem Eng Biotechnol 104: 65–85.
|
[21] | Berger MF, Philippakis AA, Qureshi AM, He FS, Estep PW 3rd, et al. (2006) Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 24: 1429–1435.
|
[22] | Bulyk ML (2006) Analysis of sequence specificities of DNA-binding proteins with protein binding microarrays. Methods Enzymol 410: 279–299.
|
[23] | Berger MF, Bulyk ML (2006) Protein binding microarrays (PBMs) for rapid, high-throughput characterization of the sequence specificities of DNA binding proteins. Methods Mol Biol 338: 245–260.
|
[24] | Bulyk ML (2006) DNA microarray technologies for measuring protein-DNA interactions. Curr Opin Biotechnol 17: 422–430.
|
[25] | Jolma A, Kivioja T, Toivonen J, Cheng L, Wei G, et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res 20: 861–873.
|
[26] | Liu X, Clarke ND (2002) Rationalization of gene regulation by a eukaryotic transcription factor: calculation of regulatory region occupancy from predicted binding affinities. J Mol Biol 323: 1–8.
|
[27] | Hallikas O, Palin K, Sinjushina N, Rautiainen R, Partanen J, et al. (2006) Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124: 47–59.
|
[28] | Wang X, Gao H, Shen Y, Weinstock GM, Zhou J, et al. (2008) A high-throughput percentage-of-binding strategy to measure binding energies in DNA-protein interactions: application to genome-scale site discovery. Nucleic Acids Res 36: 4863–4871.
|
[29] | Gustafsdottir SM, Schlingemann J, Rada-Iglesias A, Schallmeiner E, Kamali-Moghaddam M, et al. (2007) In vitro analysis of DNA-protein interactions by proximity ligation. Proc Natl Acad Sci U S A 104: 3067–3072.
|
[30] | Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D, et al. (2004) Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat Genet 36: 1331–1339.
|
[31] | Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR, et al. (2009) Diversity and complexity in DNA recognition by transcription factors. Science 324: 1720–1723.
|
[32] | Zhu C, Byers KJ, McCord RP, Shi Z, Berger MF, et al. (2009) High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res 19: 556–566.
|
[33] | Warren CL, Kratochvil NC, Hauschild KE, Foister S, Brezinski ML, et al. (2006) Defining the sequence-recognition profile of DNA-binding molecules. Proc Natl Acad Sci U S A 103: 867–872.
|
[34] | Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99–104.
|
[35] | MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7: 113.
|
[36] | Borneman AR, Zhang ZD, Rozowsky J, Seringhaus MR, Gerstein M, et al. (2007) Transcription factor binding site identification in yeast: a comparison of high-density oligonucleotide and PCR-based microarray platforms. Funct Integr Genomics 7: 335–345.
|
[37] | Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, et al. (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124: 207–219.
|
[38] | Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, et al. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4: 651–657.
|
[39] | Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316: 1497–1502.
|
[40] | Stormo GD (2000) DNA binding sites: representation and discovery. Bioinformatics 16: 16–23.
|
[41] | Berg OG, von Hippel PH (1987) Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. J Mol Biol 193: 723–750.
|
[42] | Granek JA, Clarke ND (2005) Explicit equilibrium modeling of transcription-factor binding and gene regulation. Genome Biol 6: R87.
|
[43] | Manke T, Roider HG, Vingron M (2008) Statistical modeling of transcription factor binding affinities predicts regulatory interactions. PLoS Comput Biol 4: e1000039.
|
[44] | Roider HG, Kanhere A, Manke T, Vingron M (2007) Predicting transcription factor affinities to DNA from a biophysical model. Bioinformatics 23: 134–141.
|
[45] | He X, Chen CC, Hong F, Fang F, Sinha S, et al. (2009) A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data. PLoS One 4: e8155.
|
[46] | van Oeffelen L, Cornelis P, Van Delm W, De Ridder F, De Moor B, et al. (2008) Detecting cis-regulatory binding sites for cooperatively binding proteins. Nucleic Acids Res 36: e46.
|
[47] | Djordjevic M, Sengupta AM, Shraiman BI (2003) A biophysical approach to transcription factor binding site discovery. Genome Res 13: 2381–2390.
|
[48] | Kinney JB, Tkacik G, Callan CG Jr (2007) Precise physical models of protein-DNA interaction from high-throughput data. Proc Natl Acad Sci U S A 104: 501–506.
|
[49] | Wang J, Morigen (2009) BayesPI - a new model to study protein-DNA interactions: a case study of condition-specific protein binding parameters for Yeast transcription factors. BMC Bioinformatics 10: 345.
|
[50] | Foat BC, Morozov AV, Bussemaker HJ (2006) Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics 22: e141–149.
|
[51] | Gerland U, Moroz JD, Hwa T (2002) Physical constraints and functional characteristics of transcription factor-DNA interaction. Proc Natl Acad Sci U S A 99: 12015–12020.
|
[52] | Stormo GD, Fields DS (1998) Specificity, free energy and information content in protein-DNA interactions. Trends Biochem Sci 23: 109–113.
|
[53] | Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97–109.
|
[54] | Gelman A (2004) Bayesian data analysis. Boca Raton, Fla.: Chapman & Hall/CRC.
|
[55] | Roberts GO, Gelman A, Gilks WR (1997) Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms. The Annals of Applied Probability 7: 110–120.
|
[56] | Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711–732.
|
[57] | Al-Awadhi F, Hurn M, Jennison C (2004) Improving the acceptance rate of reversible jump MCMC proposals. Statistics & Probability Letters 69: 189–198.
|
[58] | Pollock DD, Chang BH (2007) Dealing with Uncertainty in Ancestral Sequence Reconstruction: Sampling from the Posterior Distribution. In: Liberles DA, editor. Ancestral Sequence Reconstruction. Oxford: Oxford University Press.
|
[59] | Haring M, Offermann S, Danker T, Horst I, Peterhansel C, et al. (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3: 11.
|
[60] | Friden P, Schimmel P (1988) LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence. Mol Cell Biol 8: 2690–2697.
|
[61] | Foat BC, Morozov AV, Bussemaker HJ (2006) Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics 22: e141–149.
|
[62] | Gangelhoff TA, Mungalachetty PS, Nix JC, Churchill ME (2009) Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A. Nucleic Acids Res 37: 3153–3164.
|