全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

A Peptide of SPARC Interferes with the Interaction between Caspase8 and Bcl2 to Resensitize Chemoresistant Tumors and Enhance Their Regression In Vivo

DOI: 10.1371/journal.pone.0026390

Full-Text   Cite this paper   Add to My Lib

Abstract:

SPARC, a matricellular protein with tumor suppressor properties in certain human cancers, was initially identified in a genome-wide analysis of differentially expressed genes in chemotherapy resistance. Its exciting new role as a potential chemosensitizer arises from its ability to augment the apoptotic cascade, although the exact mechanisms are unclear. This study further examines the mechanism by which SPARC may be promoting apoptosis and identifies a smaller peptide analogue with greater chemosensitizing and tumor-regressing properties than the native protein. We examined the possibility that the apoptosis-enhancing activity of SPARC could reside within one of its three biological domains (N-terminus (NT), the follistatin-like (FS), or extracellular (EC) domains), and identified the N-terminus as the region with its chemosensitizing properties. These results were not only confirmed by studies utilizing stable cell lines overexpressing the different domains of SPARC, but as well, with a synthetic 51-aa peptide spanning the NT-domain. It revealed that the NT-domain induced a significantly greater reduction in cell viability than SPARC, and that it enhanced the apoptotic cascade via its activation of caspase 8. Moreover, in chemotherapy resistant human colon, breast and pancreatic cancer cells, its chemosensitizing properties also depended on its ability to dissociate Bcl2 from caspase 8. These observations translated to clinically significant findings in that, in-vivo, mouse tumor xenografts overexpressing the NT-domain of SPARC had significantly greater sensitivity to chemotherapy and tumor regression, even when compared to the highly-sensitive SPARC-overexpressing tumors. Our results identified an interplay between the NT-domain, Bcl2 and caspase 8 that helps augment apoptosis and as a consequence, a tumor's response to therapy. This NT-domain of SPARC and its 51-aa peptide are highly efficacious in modulating and enhancing apoptosis, thereby conferring greater chemosensitivity to resistant tumors. Our findings provide additional insight into mechanisms involved in chemotherapy resistance and a potential novel therapeutic that specifically targets this devastating phenomenon.

References

[1]  Chlenski A, Liu S, Crawford SE, Volpert OV, DeVries GH, et al. (2002) SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Res 62: 7357–7363.
[2]  DiMartino JF, Lacayo NJ, Varadi M, Li L, Saraiya C, et al. (2006) Low or absent SPARC expression in acute myeloid leukemia with MLL rearrangements is associated with sensitivity to growth inhibition by exogenous SPARC protein. Leukemia 20: 426–432.
[3]  Sato N, Fukushima N, Maehara N, Matsubayashi H, Koopmann J, et al. (2003) SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene 22: 5021–5030.
[4]  Tai IT, Dai M, Owen DA, Chen LB (2005) Genome-wide expression analysis of therapy-resistant tumors reveals SPARC as a novel target for cancer therapy. J Clin Invest 115: 1492–1502.
[5]  Said N, Motamed K (2005) Absence of host-secreted protein acidic and rich in cysteine (SPARC) augments peritoneal ovarian carcinomatosis. Am J Pathol 167: 1739–1752.
[6]  Puolakkainen PA, Brekken RA, Muneer S, Sage EH (2004) Enhanced growth of pancreatic tumors in SPARC-null mice is associated with decreased deposition of extracellular matrix and reduced tumor cell apoptosis. Mol Cancer Res 2: 215–224.
[7]  Yiu GK, Chan WY, Ng SW, Chan PS, Cheung KK, et al. (2001) SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. Am J Pathol 159: 609–622.
[8]  Tang MJ, Tai IT (2007) A novel interaction between procaspase 8 and SPARC enhances apoptosis and potentiates chemotherapy sensitivity in colorectal cancers. J Biol Chem 282: 34457–34467.
[9]  Bradshaw AD, Reed MJ, Carbon JG, Pinney E, Brekken RA, et al. (2001) Increased fibrovascular invasion of subcutaneous polyvinyl alcohol sponges in SPARC-null mice. Wound Repair Regen 9: 522–530.
[10]  Tai IT, Tang MJ (2008) SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug Resist Updat 11: 231–246.
[11]  Lane TF, Sage EH (1990) Functional mapping of SPARC: peptides from two distinct Ca+(+)-binding sites modulate cell shape. J Cell Biol 111: 3065–3076.
[12]  Funk SE, Sage EH (1991) The Ca2(+)-binding glycoprotein SPARC modulates cell cycle progression in bovine aortic endothelial cells. Proc Natl Acad Sci U S A 88: 2648–2652.
[13]  Chlenski A, Liu S, Baker LJ, Yang Q, Tian Y, et al. (2004) Neuroblastoma angiogenesis is inhibited with a folded synthetic molecule corresponding to the epidermal growth factor-like module of the follistatin domain of SPARC. Cancer Res 64: 7420–7425.
[14]  Maurer P, Hohenadl C, Hohenester E, Gohring W, Timpl R, et al. (1995) The C-terminal portion of BM-40 (SPARC/osteonectin) is an autonomously folding and crystallisable domain that binds calcium and collagen IV. J Mol Biol 253: 347–357.
[15]  Kupprion C, Motamed K, Sage EH (1998) SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. J Biol Chem 273: 29635–29640.
[16]  Chlenski A, Liu S, Guerrero LJ, Yang Q, Tian Y, et al. (2006) SPARC expression is associated with impaired tumor growth, inhibited angiogenesis and changes in the extracellular matrix. Int J Cancer 118: 310–316.
[17]  Poulaki V, Mitsiades N, Romero ME, Tsokos M (2001) Fas-mediated apoptosis in neuroblastoma requires mitochondrial activation and is inhibited by FLICE inhibitor protein and Bcl-2. Cancer Res 61: 4864–4872.
[18]  Wang W, Mei C, Tang B, Zhao H, Xu C, et al. (2006) Aberrant expression of SPARC and its impact on proliferation and apoptosis in ADPKD cyst-lining epithelia. Nephrol Dial Transplant 21: 1278–1288.
[19]  Ledda MF, Adris S, Bravo AI, Kairiyama C, Bover L, et al. (1997) Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells. Nat Med 3: 171–176.
[20]  Schultz C, Lemke N, Ge S, Golembieski WA, Rempel SA (2002) Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo. Cancer Res 62: 6270–6277.
[21]  Gilles C, Bassuk JA, Pulyaeva H, Sage EH, Foidart JM, et al. (1998) SPARC/osteonectin induces matrix metalloproteinase 2 activation in human breast cancer cell lines. Cancer Res 58: 5529–5536.
[22]  Rempel SA, Golembieski WA, Ge S, Lemke N, Elisevich K, et al. (1998) SPARC: a signal of astrocytic neoplastic transformation and reactive response in human primary and xenograft gliomas. J Neuropathol Exp Neurol 57: 1112–1121.
[23]  Motamed K (1999) SPARC (osteonectin/BM-40). Int J Biochem Cell Biol 31: 1363–1366.
[24]  Funk SE, Sage EH (1993) Differential effects of SPARC and cationic SPARC peptides on DNA synthesis by endothelial cells and fibroblasts. J Cell Physiol 154: 53–63.
[25]  Lane TF, Iruela-Arispe ML, Johnson RS, Sage EH (1994) SPARC is a source of copper-binding peptides that stimulate angiogenesis. J Cell Biol 125: 929–943.
[26]  Iruela-Arispe ML, Lane TF, Redmond D, Reilly M, Bolender RP, et al. (1995) Expression of SPARC during development of the chicken chorioallantoic membrane: evidence for regulated proteolysis in vivo. Mol Biol Cell 6: 327–343.
[27]  Wang H, Workman G, Chen S, Barker TH, Ratner BD, et al. (2006) Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM-40) binds to fibrinogen fragments D and E, but not to native fibrinogen. Matrix Biol 25: 20–26.
[28]  Cheetham S, Tang MJ, Mesak F, Kennecke H, Owen D, et al. (2008) SPARC promoter hypermethylation in colorectal cancers can be reversed by 5-Aza-2′deoxycytidine to increase SPARC expression and improve therapy response. Br J Cancer.
[29]  Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science 228: 1440–1443.
[30]  Mohammad R, Giri A, Goustin AS (2008) Small-molecule inhibitors of Bcl-2 family proteins as therapeutic agents in cancer. Recent Patents Anticancer Drug Discov 3: 20–30.
[31]  Omidvar N, Kogan S, Beurlet S, le Pogam C, Janin A, et al. (2007) BCL-2 and mutant NRAS interact physically and functionally in a mouse model of progressive myelodysplasia. Cancer Res 67: 11657–11667.
[32]  Modica-Napolitano JS, Steele GD Jr, Chen LB (1989) Aberrant mitochondria in two human colon carcinoma cell lines. Cancer Res 49: 3369–3373.
[33]  Schiemann BJ, Neil JR, Schiemann WP (2003) SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system. Mol Biol Cell 14: 3977–3988.
[34]  Haber CL, Gottifredi V, Llera AS, Salvatierra E, Prada F, et al. (2008) SPARC modulates the proliferation of stromal but not melanoma cells unless endogenous SPARC expression is downregulated. Int J Cancer 122: 1465–1475.
[35]  Chan JM, Ho SH, Tai IT (2010) Secreted protein acidic and rich in cysteine-induced cellular senescence in colorectal cancers in response to irinotecan is mediated by P53. Carcinogenesis 31: 812–819.
[36]  Taghizadeh F, Tang MJ, Tai IT (2007) Synergism between vitamin D and secreted protein acidic and rich in cysteine-induced apoptosis and growth inhibition results in increased susceptibility of therapy-resistant colorectal cancer cells to chemotherapy. Mol Cancer Ther 6: 309–317.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133