[1] | Higgins NP, Peebles CL, Sugino A, Cozzarelli NR (1978) Purification of the subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity. Proc Natl Acad Sci USA 75: 1773–1777. doi: 10.1073/pnas.75.4.1773
|
[2] | Roca J (1995) The mechanisms of DNA topoisomerases. Trends Biochem Sci 20: 156–160. doi: 10.1016/s0968-0004(00)88993-8
|
[3] | DiNardo S, Voelkel KA, Sternglanz R, Reynolds AE, Wright A (1982) Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31: 43–51. doi: 10.1016/0092-8674(82)90403-2
|
[4] | Drolet M, Broccoli S, Rallu F, Hraiky C, Fortin C, et al. (2003) The problem of hypernegative supercoiling and R-loop formation in transcription. Front Biosci 8: D210–D221. doi: 10.2741/970
|
[5] | DiGate RJ, Marians KJ (1988) Identification of a potent decatenating enzyme from Escherichia coli. J Biol Chem 263: 13366–13373.
|
[6] | Zechiedrich EL, Khodursky AB, Bachellier S, Schneider R, Chen D, et al. (2000) Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J Biol Chem 275: 8103–8113. doi: 10.1074/jbc.275.11.8103
|
[7] | Espeli O, Marians KJ (2004) Untangling intracellular DNA topology. Mol Microbiol 52: 925–931. doi: 10.1111/j.1365-2958.2004.04047.x
|
[8] | Pang Z, Chen R, Manna D, Higgins NP (2005) A gyrase mutant with low activity disrupts supercoiling at the replication terminus. J Bacteriol 187: 7773–7783. doi: 10.1128/jb.187.22.7773-7783.2005
|
[9] | Ogura T, Niki H, Mori H, Morita M, Hasegawa M, et al. (1990) Identification and characterization of gyrB mutants of Escherichic coli that are defective in partitioning of mini-F plasmids. J Bacteriol 172: 1562–1568.
|
[10] | Champion K, Higgins NP (2007) Growth rate toxicity phenotypes and homeostatic supercoil control differentiate Escherichia coli from Salmonella enterica serovar Typhimurium. J Bacteriol 189: 5839–5849. doi: 10.1128/jb.00083-07
|
[11] | Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR, et al. (1988) A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52: 569–584. doi: 10.1016/0092-8674(88)90470-9
|
[12] | Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, et al. (2004) Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol 5: R87. doi: 10.1186/gb-2004-5-11-r87
|
[13] | Booker BM, Deng S, Higgins NP (2010) DNA topology of highly transcribed operons in Salmonella enterica serovar Typhimurium. Mol Microbiol 78: 1348–1364. doi: 10.1111/j.1365-2958.2010.07394.x
|
[14] | Cozzarelli NR, Wang JC (1990) DNA topology and its biological effects. Cold Spring Harbor, N.Y.: Cold Spring Harbor Press. 480 p.
|
[15] | Sternglanz R, DiNardo S, Voelkel KA, Nishimura Y, Hirota Y, et al. (1981) Mutations in the gene coding for Escherichia coli DNA topoisomerase I affect transcription and transposition. Proc Natl Acad Sci USA 78: 2747–2751. doi: 10.1073/pnas.78.5.2747
|
[16] | Crozat E, Philippe N, Lenski RE, Geiselmann J, Schneider D (2005) Long-Term Experimental Evolution in Escherichia coli. XII. DNA Topology as a Key Target of Selection. Genetics 169: 523–532. doi: 10.1534/genetics.104.035717
|
[17] | Crozat E, Winkworth C, Gaffe J, Hallin PF, Riley MA, et al. (2010) Parallel genetic and phenotypic evolution of DNA superhelicity in experimental populations of Escherichia coli. Mol Biol Evol 27: 2113–2128. doi: 10.1093/molbev/msq099
|
[18] | Steck TR, Pruss GJ, Manes SH, Burg L, Drlica K (1984) DNA supercoiling in gyrase mutants. J Bacteriol 158: 397–403.
|
[19] | Higgins NP, Vologodskii A (2004) Topological behavior of plasmid DNA. In: Funnell BE, Phillips GJ, editors. Plasmid Biology. Washington D.C.: ASM Press. pp. 181–201.
|
[20] | Higgins NP, Yang X, Fu Q, Roth JR (1996) Surveying a supercoil domain by using the γδ resolution system in Salmonella typhimurium. J Bacteriol 178: 2825–2835.
|
[21] | Stein R, Deng S, Higgins NP (2005) Measuring chromosome dynamics on different timescales using resolvases with varying half-lives. Mol Microbiol 56: 1049–1061. doi: 10.1111/j.1365-2958.2005.04588.x
|
[22] | Benjamin KR, Abola AP, Kanaar R, Cozzarelli NR (1996) Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination. J Mol Biol 256: 50–65. doi: 10.1006/jmbi.1996.0067
|
[23] | Stark WM, Sherratt DJ, Boocock MR (1989) Site-specific recombination by Tn3 resolvase: topological changes in the forward and reverse reactions. Cell 58: 779–790. doi: 10.1016/0092-8674(89)90111-6
|
[24] | Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75: 567–605. doi: 10.1146/annurev.biochem.73.011303.073908
|
[25] | Oram M, Marko JF, Halford SE (1997) Communications between distant sites on supercoiled DNA from non-exponential kinetics for DNA synapsis by resolvase. J Mol Biol 270: 396–412. doi: 10.1006/jmbi.1997.1109
|
[26] | Staczek P, Higgins NP (1998) DNA gyrase and Topoisomerase IV modulate chromosome domain size in vivo. Mol Micro 29: 1435–1448. doi: 10.1046/j.1365-2958.1998.01025.x
|
[27] | Moulin L, Rahmouni AR, Boccard F (2005) Topological insulators inhibit diffusion of transcription-induced positive supercoils in the chromosome of Escherichia coli. Mol Microbiol 55: 601–610. doi: 10.1111/j.1365-2958.2004.04411.x
|
[28] | Hardy C, Cozzarelli NR (2005) A genetic selection for supercoiling mutants of Escherichia coli reveals proteins implicated in chromosome structure. Mol Microbio 57: 1636–1652. doi: 10.1111/j.1365-2958.2005.04799.x
|
[29] | Pettijohn DE, Pfenninger O (1980) Supercoils in prokaryotic DNA restrained in vivo. Proc Natl Acad Sci USA 77: 1331–1335. doi: 10.1073/pnas.77.3.1331
|
[30] | Gamper HB, Hearst JE (1982) A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes. Cell 29: 81–90. doi: 10.1016/0092-8674(82)90092-7
|
[31] | Deng S, Stein RA, Higgins NP (2004) Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome. Proc Natl Acad Sci USA 101: 3398–3403. doi: 10.1073/pnas.0307550101
|
[32] | Deng S, Stein RA, Higgins NP (2005) Organization of supercoil domains and their reorganization by transcription. Mol Microbio 57: 1511–1521. doi: 10.1111/j.1365-2958.2005.04796.x
|
[33] | Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84: 7024–7027. doi: 10.1073/pnas.84.20.7024
|
[34] | Pato ML, Bennett PM, von Meyenburg K (1973) Messenger ribonucleic acid synthesis and degradation in Escherichia coli during inhibition of translation. J Bacteriol 116: 710–718.
|
[35] | Khodursky AB, Peter BJ, Schmid MB, DeRisi J, Botstein D, et al. (2000) Analysis of topoisomerase function in bacterial replication fork movement: Use of DNA microarrays. Proc Natl Acad Sci USA 97: 9419–9424. doi: 10.1073/pnas.97.17.9419
|
[36] | Fass D, Bogden CE, Berger JM (1999) Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands. Nat Struct Biol 6: 322–326.
|
[37] | Qi Y, Pei J, Grishin NV (2002) C-terminal domain of gyrase A is predicted to have a beta-propeller structure. Proteins 47: 258–264. doi: 10.1002/prot.10090
|
[38] | Aravind L, Leipe DD, Koonin EV (1998) Toprim–a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res 26: 4205–4213. doi: 10.1093/nar/26.18.4205
|
[39] | Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25: 24–28. doi: 10.1016/s0968-0004(99)01503-0
|
[40] | Postow L, Hardy CD, Arsuaga J, Cozzarelli NR (2004) Topological domain structure of the Escherichia coli chromosome. Genes Dev 18: 1766–1779. doi: 10.1101/gad.1207504
|
[41] | Valens M, Penaud S, Rossignol M, Cornet F, Boccard F (2004) Macrodomain organization of the Escherichia coli chromosome. EMBO J 23: 4330–4341. doi: 10.1038/sj.emboj.7600434
|
[42] | Niki H, Yamaichi Y, Hiraga S (2000) Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev 14: 212–223.
|
[43] | Esnault E, Valens M, Espeli O, Boccard F (2007) Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet 3: e226 doi:10.1371/journal.pgen.0030226. doi: 10.1371/journal.pgen.0030226
|
[44] | Espeli O, Mercier R, Boccard F (2008) DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol Microbiol 68: 1418–1427. doi: 10.1111/j.1365-2958.2008.06239.x
|
[45] | Garcia-Russell N, Harmon TG, Le TQ, Amaladas NH, Mathewson RD, et al. (2004) Unequal access of chromosomal regions to each other in Salmonella : probing chromosome structure with phage l integrase-mediated long-range rearrangements. Mol Microbiol 52: 329–344. doi: 10.1111/j.1365-2958.2004.03976.x
|
[46] | Lee AK, Detweiler CS, Falkow S (2000) OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J Bacteriol 182: 771–781. doi: 10.1128/jb.182.3.771-781.2000
|
[47] | Mercier R, Petit MA, Schbath S, Robin S, El Karoui M, et al. (2008) The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 135: 475–485. doi: 10.1016/j.cell.2008.08.031
|
[48] | Aussel L, Barre F-X, Aryoy M, Stasiak A, Stasiak AZ, et al. (2002) FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108: 195–205. doi: 10.1016/s0092-8674(02)00624-4
|
[49] | Hojgaard A, Szerlong H, tabor C, Kuempel P (1999) Norfloxacin-induced DNA cleavage occurs at the dif resolvase locus in Escherichia coli and is the result of interaction with topoisomerase IV. Mol Microbiol 33: 1027–1036. doi: 10.1046/j.1365-2958.1999.01545.x
|
[50] | Blakely G, Colloms S, May G, Burke M, Sherratt D (1991) Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. The New Biologist 3: 789–798.
|
[51] | Wang JC (1985) DNA topoisomerases. Annu Rev Biochem 54: 665–697. doi: 10.1146/annurev.bi.54.070185.003313
|
[52] | Holmes VF, Cozzarelli NR (2000) Closing the ring: Links between SMC proteins and chromosome partitioning, condensation, and supercoiling. Proc Natl Acad Sci USA 97: 1322–1324. doi: 10.1073/pnas.040576797
|
[53] | Brewer BJ (1990) Replication and the transcriptional organization of the Escherichia coli chromosome. In: Drlica K, Riley M, editors. The Bacterial Chromosome. Washington, D.C.: ASM Press. pp. 61–84.
|
[54] | Bartlett MS, Gaal T, Ross W, Gourse RL (1998) RNA polymerase mutants that destabilize RNA polymerase-promoter complexes alter NTP-sensing by rrn P1 promoters. J Mol Biol 279: 331–345. doi: 10.1006/jmbi.1998.1779
|
[55] | Vogel U, Sorensen M, Pedersen S, Jensen KF, Kilstrup M (1992) Decreasing transcription elongation rate in Escherichia coli exposed to amino acid starvation. Mol Microbiol 6: 2191–2200. doi: 10.1111/j.1365-2958.1992.tb01393.x
|
[56] | Dame RT, Kalmykowa OJ, Grainger DC (2011) Chromosomal macrodomains and associated proteins: implications for DNA organization and replication in gram negative bacteria. PLoS Genet 7: e1002123 doi:10.1371/journal.pgen.1002123. doi: 10.1371/journal.pgen.1002123
|
[57] | Dame RT, Noom MC, Wuite GJ (2006) Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444: 387–390. doi: 10.1038/nature05283
|
[58] | Skoko D, Yoo D, Bai H, Schnurr B, Yan J, et al. (2006) Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis. J Mol Biol doi: 10.1016/j.jmb.2006.09.043
|
[59] | Cozzarelli NR (1980) DNA gyrase and the supercoiling of DNA. Science 207: 953–960. doi: 10.1126/science.6243420
|
[60] | Menzel R, Gellert M (1983) Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell 34: 105–113. doi: 10.1016/0092-8674(83)90140-x
|
[61] | Tse-Dinh Y-C (1985) Regulation of the Escherichia coli DNA topoisomerase I gene by DNA supercoiling. Nucleic Acids Res 13. doi: 10.1093/nar/13.13.4751
|
[62] | Dorman CJ, Bhriain NN, Higgins CF (1990) DNA supercoiling and environmental regulation of virulence gene expression in Shigella flexneri. Nature 344: 789–792. doi: 10.1038/344789a0
|
[63] | Jensen PR, van der Weijden CC, Jensen LB, Westerhoff HV, Snoep JL (1999) Extensive regulation compromises the extent to which DNA gyrase controls DNA supercoiling and growth rate of Escherichia coli. Eur J Biochem 226: 865–877. doi: 10.1046/j.1432-1327.1999.00921.x
|
[64] | Snoep JL, van der Weijden CC, Andersen HW, Westerhoff HV, Jensen PR (2002) DNA supercoiling in Escherichia coli is under tight and subtle homeostatic control, involving gene-expression and metabolic regulation of both topoisomerase I and DNA gyrase. Eur J Biochem 269: 1662–1669. doi: 10.1046/j.1432-1327.2002.02803.x
|
[65] | Sobetzko P, Travers A, Muskhelishvili G (2012) Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci U S A 109: E42–50. doi: 10.1073/pnas.1108229109
|
[66] | Miller WG, Simons RW (1993) Chromosomal supercoiling in Escherichia coli. Mol Microbiol 10: 675–684. doi: 10.1111/j.1365-2958.1993.tb00939.x
|
[67] | Pavitt GD, Higgins CF (1993) Chromosomal domains of supercoiling in Salmonella typhimurium. Mol Microbiol 10: 685–696. doi: 10.1111/j.1365-2958.1993.tb00940.x
|
[68] | Hayama R, Marians KJ (2010) Physical and functional interaction between the condensin MukB and the decatenase topoisomerase IV in Escherichia coli. Proc Natl Acad Sci U S A 107: 18826–18831. doi: 10.1073/pnas.1008140107
|
[69] | Wang X, Reyes-Lamothe R, Sherratt DJ (2008) Modulation of Escherichia coli sister chromosome cohesion by topoisomerase IV. Genes Dev 22: 2426–2433. doi: 10.1101/gad.487508
|
[70] | Tehranchi AK, Blankschien MD, Zhang Y, Halliday JA, Srivatsan A, et al. (2010) The transcription factor DksA prevents conflicts between DNA replication and transcription machinery. Cell 141: 595–605. doi: 10.1016/j.cell.2010.03.036
|
[71] | Paul BJ, Barker MM, Ross W, Schneider DA, Webb C, et al. (2004) DksA: A critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118: 311–322.
|
[72] | Blanc-Potard AB, Gari E, Spirito F, Figueroa-Bossi N, Bossi L (1995) RNA polymerase (rpoB) mutants selected for increased resistance to gyrase inhibitors in Salmonella typhimurium. Mol Gen Genet 247: 680–692. doi: 10.1007/bf00290399
|
[73] | Dorman CJ (1991) DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infect Immun 59: 745–749.
|
[74] | Wu H-Y, Shyy S, Wang JC, Liu LF (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53: 433–440. doi: 10.1016/0092-8674(88)90163-8
|
[75] | Pruss G, Drlica K (1986) Topoisomerase I mutants: The gene on pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling. Proc Natl Acad Sci USA 83: 8952–8956. doi: 10.1073/pnas.83.23.8952
|
[76] | Spirito F, Figueroa-Bossi N, Bossi L (1994) The relative contributions of transcription and translation to plasmid DNA supercoiling in Salmonella typhimurium. Mol Microbiol 11: 111–122. doi: 10.1111/j.1365-2958.1994.tb00294.x
|
[77] | Tretter EM, Berger JM (2012) Mechanisms for defining the supercoiling setpoint of DNA gyrase orthologs I. A non-conserved acidic C-terminal tail modulates E. coli gyrase activity. J Biol Chem doi: 10.1074/jbc.m112.345678
|
[78] | Tretter EM, Berger JM (2012) Mechanisms For Defining Supercoiling Setpoint By DNA Gyrase Orthologs II. The shape of the GyrA CTD is not a sole determinant for controlling supercoiling efficiency. J Biol Chem doi: 10.1074/jbc.m112.345736
|
[79] | Klevecz RR, Bolen J, Forrest G, Murray DB (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci USA 101: 1200–1205. doi: 10.1073/pnas.0306490101
|
[80] | Chen Z, Odstrcil EA, Tu BP, McKnight SL (2007) Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science 316: 1916–1919. doi: 10.1126/science.1140958
|
[81] | Silverman SJ, Petti AA, Slavov N, Parsons L, Briehof R, et al. (2010) Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate. Proc Natl Acad Sci U S A 107: 6946–6951. doi: 10.1073/pnas.1002422107
|
[82] | Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC (2002) Activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298: 2390–2392. doi: 10.1126/science.1077650
|
[83] | Bremer H, Dennis P (1996) Modulation of chemical composition and other parameters of the cell by growth rate. In: Neidhardt FC, editor. Escherichia coli and Salmonella typhimurium. Washington, DC: American Society for Microbiology Press. 1553.
|
[84] | England JC, Perchuk BS, Laub MT, Gober JW (2010) Global regulation of gene expression and cell differentiation in Caulobacter crescentus in response to nutrient availability. J Bacteriol 192: 819–833. doi: 10.1128/jb.01240-09
|
[85] | Koster DA, Crut A, Shuman S, Bjornsti MA, Dekker NH (2010) Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell 142: 519–530. doi: 10.1016/j.cell.2010.08.001
|
[86] | Mason PB, Struhl K (2005) Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol Cell 17: 831–840. doi: 10.1016/j.molcel.2005.02.017
|
[87] | Gartenberg MR, Wang JC (1992) Positive supercoiling of DNA greatly diminishes mRNA synthesis in yeast. Proc Natl Acad Sci U S A 89: 11461–11465. doi: 10.1073/pnas.89.23.11461
|
[88] | Yu D, Ellis HE, Lee E-C, Jenkins NA, Copeland NG, et al. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97: 5978–5983. doi: 10.1073/pnas.100127597
|
[89] | Datta S, Costantino N, Court DL (2006) A set of recombineering plasmids for gram-negative bacteria. Gene 379: 109–115. doi: 10.1016/j.gene.2006.04.018
|
[90] | Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175: 3401–3407.
|
[91] | Miller JH (1972) Experiments in Molecular Genetics; Miller JH, editor. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.
|
[92] | Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4: 206–223. doi: 10.1038/nprot.2008.227
|