全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2012 

Genome-Wide Association Studies Identify Heavy Metal ATPase3 as the Primary Determinant of Natural Variation in Leaf Cadmium in Arabidopsis thaliana

DOI: 10.1371/journal.pgen.1002923

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the mechanism of cadmium (Cd) accumulation in plants is important to help reduce its potential toxicity to both plants and humans through dietary and environmental exposure. Here, we report on a study to uncover the genetic basis underlying natural variation in Cd accumulation in a world-wide collection of 349 wild collected Arabidopsis thaliana accessions. We identified a 4-fold variation (0.5–2 μg Cd g?1 dry weight) in leaf Cd accumulation when these accessions were grown in a controlled common garden. By combining genome-wide association mapping, linkage mapping in an experimental F2 population, and transgenic complementation, we reveal that HMA3 is the sole major locus responsible for the variation in leaf Cd accumulation we observe in this diverse population of A. thaliana accessions. Analysis of the predicted amino acid sequence of HMA3 from 149 A. thaliana accessions reveals the existence of 10 major natural protein haplotypes. Association of these haplotypes with leaf Cd accumulation and genetics complementation experiments indicate that 5 of these haplotypes are active and 5 are inactive, and that elevated leaf Cd accumulation is associated with the reduced function of HMA3 caused by a nonsense mutation and polymorphisms that change two specific amino acids.

References

[1]  Ursinyova M HV (2000) Cadmium in the environment of Central Europe. In: Markert Bernd A FK, editor. Trace Elements: their distribution and effects in the environment. 1 ed. Kindligton: Elsevier Science Ltd. pp. 87–108.
[2]  Nawrot T, Plusquin M, Hogervorst J, Roels HA, Celis H, et al. (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7: 119–126. doi: 10.1016/s1470-2045(06)70545-9
[3]  Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12: 364–372. doi: 10.1016/j.pbi.2009.05.001
[4]  Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41: 1665–1677. doi: 10.1016/j.biocel.2009.03.005
[5]  LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32: 514–520. doi: 10.1007/s10295-005-0227-0
[6]  Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62: 21–37. doi: 10.1093/jxb/erq281
[7]  Wong CK, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181: 71–78. doi: 10.1111/j.1469-8137.2008.02638.x
[8]  Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, et al. (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16: 1327–1339. doi: 10.1105/tpc.020487
[9]  Valdes B, Duke M, Peaston KA, Lahner B, et al. (2010) Functional significance of AtHMA4 C-terminal domain in planta. PLoS ONE 5: e13388 doi:10.1371/journal.pone.0013388. doi: 10.1371/journal.pone.0013388
[10]  Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, et al. (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453: 391–395. doi: 10.1038/nature06877
[11]  ó Lochlainn S, Bowen HC, Fray RG, Hammond JP, King GJ, et al. (2011) Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS ONE 6: e17814 doi:10.1371/journal.pone.0017814. doi: 10.1371/journal.pone.0017814
[12]  Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, et al. (2011) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of Zn and Cd. Plant Cell Physiol doi: 10.1093/pcp/pcr166
[13]  Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA (2011) Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell Environ 34: 994–1008. doi: 10.1111/j.1365-3040.2011.02299.x
[14]  Korenkov V, King B, Hirschi K, Wagner GJ (2009) Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Plant Biotechnol J 7: 219–226. doi: 10.1111/j.1467-7652.2008.00390.x
[15]  Koren'kov V, Park S, Cheng NH, Sreevidya C, Lachmansingh J, et al. (2007) Enhanced Cd2+ -selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta 225: 403–411. doi: 10.1007/s00425-006-0352-7
[16]  Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, et al. (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66: 852–862. doi: 10.1111/j.1365-313x.2011.04548.x
[17]  Ueno D, Yamaji N, Kono I, Huang CF, Ando T, et al. (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci U S A 107: 16500–16505. doi: 10.1073/pnas.1005396107
[18]  Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, et al. (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189: 190–199. doi: 10.1111/j.1469-8137.2010.03459.x
[19]  Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, et al. (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149: 894–904. doi: 10.1104/pp.108.130294
[20]  Park J, Song WY, Ko D, Eom Y, Hansen TH, et al. (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69: 278–288. doi: 10.1111/j.1365-313x.2011.04789.x
[21]  Mendoza-Cozatl DG, Zhai Z, Jobe TO, Akmakjian GZ, Song WY, et al. (2011) Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance. J Biol Chem 285: 40416–40426. doi: 10.1074/jbc.m110.155408
[22]  Becher M, Talke IN, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37: 251–268. doi: 10.1046/j.1365-313x.2003.01959.x
[23]  Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, et al. (2004) AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561: 22–28. doi: 10.1016/s0014-5793(04)00072-9
[24]  Alonso-Blanco C, Aarts MG, Bentsink L, Keurentjes JJ, Reymond M, et al. (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21: 1877–1896. doi: 10.1105/tpc.109.068114
[25]  Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55: 141–172. doi: 10.1146/annurev.arplant.55.031903.141605
[26]  Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, et al. (2010) A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet 6: e1001193 doi:10.1371/journal.pgen.1001193. doi: 10.1371/journal.pgen.1001193
[27]  Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, et al. (2011) A map of local adaptation in Arabidopsis thaliana. Science 334: 86–89. doi: 10.1126/science.1209271
[28]  Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, et al. (2011) Adaptation to climate across the Arabidopsis thaliana genome. Science 334: 83–86. doi: 10.1126/science.1209244
[29]  Horton MW, Hancock AM, Huang YS, Toomajian C, Atwell S, et al. (2012) Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet 2012 44: 212–216. doi: 10.1038/ng.1042
[30]  Hoffmannm MH (2002) Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicacceae). J Biogrogr 29: 125–134. doi: 10.1046/j.1365-2699.2002.00647.x
[31]  Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, et al. (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465: 627–631. doi: 10.1038/nature08800
[32]  Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO (2010) Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107: 21199–21204. doi: 10.1073/pnas.1007431107
[33]  Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, et al. (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6: e1000940 doi:10.1371/journal.pgen.1000940. doi: 10.1371/journal.pgen.1000940
[34]  Filiault D, Maloof J (2012) A Genome-Wide Association Study Identifies Variants Underlying the Arabidopsis thaliana Shade Avoidance Response. PLoS Genet 8: e1002589 doi:10.1371/journal.pgen.1002589. doi: 10.1371/journal.pgen.1002589
[35]  Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, et al. (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1: e60 doi:10.1371/journal.pgen.0010060. doi: 10.1371/journal.pgen.0010060.eor
[36]  Nemri A, Atwell S, Tarone AM, Huang YS, Zhao K, et al. (2010) Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using combined association and linkage mapping. Proc Natl Acad Sci U S A 107: 10302–10307. doi: 10.1073/pnas.0913160107
[37]  Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, et al. (2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465: 632–636. doi: 10.1038/nature09083
[38]  Huang X, Wei X, Sang T, Zhao Q, Feng Q, et al. (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42: 961–967. doi: 10.1038/ng.695
[39]  Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, et al. (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2: 467. doi: 10.1038/ncomms1467
[40]  Huang X, Zhao Y, Wei X, Li C, Wang A, et al. (2011) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44: 32–39. doi: 10.1038/ng.1018
[41]  Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, et al. (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43: 163–168. doi: 10.1038/ng.747
[42]  Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, et al. (2011) Genome-wide association study of leaf architecture in the maize nestedassociation mapping population. Nat Genet 43: 159–162. doi: 10.1038/ng.746
[43]  Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, et al. (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21: 1215–1221. doi: 10.1038/nbt865
[44]  Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38: 203–208. doi: 10.1038/ng1702
[45]  Beck JB, Schmuths H, Schaal BA (2008) Native range genetic variation in Arabidopsis thaliana is strongly geographically structured and reflects Pleistocene glacial dynamics. Mol Ecol 17: 902–915. doi: 10.1111/j.1365-294x.2007.03615.x
[46]  Wolyn DJ, Borevitz JO, Loudet O, Schwartz C, Maloof J, et al. (2004) Light-response quantitative trait loci identified with composite interval and eXtreme array mapping in Arabidopsis thaliana. Genetics 167: 907–917. doi: 10.1534/genetics.103.024810
[47]  Becker A, Chao DY, Zhang X, Salt DE, Baxter I (2011) Bulk segregant analysis using single nucleotide polymorphism microarrays. PLoS ONE 6: e15993 doi:10.1371/journal.pone.0015993. doi: 10.1371/journal.pone.0015993
[48]  Platt A, Horton M, Huang YS, Li Y, Anastasio AE, et al. (2010) The scale of population structure in Arabidopsis thaliana. PLoS Genet 6: e1000843 doi:10.1371/journal.pgen.1000843. doi: 10.1371/journal.pgen.1000843
[49]  Rus A, Baxter I, Muthukumar B, Gustin J, Lahner B, et al. (2006) Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genet 2: e210 doi:10.1371/journal.pgen.0020210. doi: 10.1371/journal.pgen.0020210.eor
[50]  Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B, et al. (2008) Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4: e1000004 doi:10.1371/journal.pgen.1000004. doi: 10.1371/journal.pgen.1000004
[51]  Baxter I, Ouzzani M, Orcun S, Kennedy B, Jandhyala SS, et al. (2007) Purdue ionomics information management system. An integrated functional genomics platform. Plant Physiol 143: 600–611. doi: 10.1104/pp.106.092528
[52]  Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, et al. (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13: 513–523. doi: 10.1101/gr.541303
[53]  Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743. doi: 10.1046/j.1365-313x.1998.00343.x
[54]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 25: 402–408. doi: 10.1006/meth.2001.1262

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133