A causative role for single nucleotide polymorphisms (SNPs) in many genetic disorders has become evident through numerous genome-wide association studies. However, identification of these common causal variants and the molecular mechanisms underlying these associations remains a major challenge. Differential transcription factor binding at a SNP resulting in altered gene expression is one possible mechanism. Here we apply PWAS (“proteome-wide analysis of SNPs”), a methodology based on quantitative mass spectrometry that enables rapid screening of SNPs for differential transcription factor binding, to 12 SNPs that are highly associated with type 1 diabetes at the IL2RA locus, encoding the interleukin-2 receptor CD25. We report differential, allele-specific binding of the transcription factors RUNX1, LEF1, CREB, and TFAP4 to IL2RA SNPs rs12722508*A, rs12722522*C, rs41295061*A, and rs2104286*A and demonstrate the functional influence of RUNX1 at rs12722508 by reporter gene assay. Thus, PWAS may be able to contribute to our understanding of the molecular consequences of human genetic variability underpinning susceptibility to multi-factorial disease.
References
[1]
Dendrou CA, Plagnol V, Fung E, Yang JH, Downes K, et al. (2009) Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat Genet 41: 1011–1015. doi: 10.1038/ng.434
[2]
Lowe CE, Cooper JD, Brusko T, Walker NM, Smyth DJ, et al. (2007) Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet 39: 1074–1082. doi: 10.1038/ng2102
[3]
Gingras AC, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8: 645–654. doi: 10.1038/nrm2208
[4]
Vermeulen M, Hubner NC, Mann M (2008) High confidence determination of specific protein-protein interactions using quantitative mass spectrometry. Curr Opin Biotechnol 19: 331–337. doi: 10.1016/j.copbio.2008.06.001
[5]
Mittler G, Butter F, Mann M (2009) A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res 19: 284–293. doi: 10.1101/gr.081711.108
[6]
Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, et al. (2003) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33: 349–355. doi: 10.1038/ng1101
[7]
Kao SC, Wu H, Xie J, Chang CP, Ranish JA, et al. (2009) Calcineurin/NFAT signaling is required for neuregulin-regulated Schwann cell differentiation. Science 323: 651–654. doi: 10.1126/science.1166562
[8]
Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, et al. (2008) CTCF physically links cohesin to chromatin. Proc Natl Acad Sci U S A 105: 8309–8314. doi: 10.1073/pnas.0801273105
[9]
Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1: 252–262. doi: 10.1038/nchembio736
[10]
Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7: 952–958. doi: 10.1038/nrm2067
[11]
Mottagui-Tabar S, Faghihi MA, Mizuno Y, Engstrom PG, Lenhard B, et al. (2005) Identification of functional SNPs in the 5-prime flanking sequences of human genes. BMC Genomics 6: 18. doi: 10.1186/1471-2164-6-18
[12]
Suske G (1999) The Sp-family of transcription factors. Gene 238: 291–300. doi: 10.1016/s0378-1119(99)00357-1
[13]
Law GL, Itoh H, Law DJ, Mize GJ, Merchant JL, et al. (1998) Transcription factor ZBP-89 regulates the activity of the ornithine decarboxylase promoter. J Biol Chem 273: 19955–19964. doi: 10.1074/jbc.273.32.19955
[14]
Okuda T, Nishimura M, Nakao M, Fujita Y (2001) RUNX1/AML1: a central player in hematopoiesis. Int J Hematol 74: 252–257. doi: 10.1007/bf02982057
[15]
Alarcon-Riquelme ME (2003) A RUNX trio with a taste for autoimmunity. Nat Genet 35: 299–300. doi: 10.1038/ng1203-299
[16]
Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, et al. (1993) Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol Cell Biol 13: 3324–3339.
[17]
Oesterreich S (2003) Scaffold attachment factors SAFB1 and SAFB2: Innocent bystanders or critical players in breast tumorigenesis? J Cell Biochem 90: 653–661. doi: 10.1002/jcb.10685
[18]
Angers S, Moon RT (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10: 468–477. doi: 10.1038/nrm2717
[19]
Waterman ML, Fischer WH, Jones KA (1991) A thymus-specific member of the HMG protein family regulates the human T cell receptor C alpha enhancer. Genes Dev 5: 656–669. doi: 10.1101/gad.5.4.656
[20]
Paca-Uccaralertkun S, Zhao LJ, Adya N, Cross JV, Cullen BR, et al. (1994) In vitro selection of DNA elements highly responsive to the human T-cell lymphotropic virus type I transcriptional activator, Tax. Mol Cell Biol 14: 456–462.
[21]
Wilson NK, Foster SD, Wang X, Knezevic K, Schutte J, et al. (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7: 532–544. doi: 10.1016/j.stem.2010.07.016
[22]
Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10: 605–616. doi: 10.1038/nrg2636
[23]
Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, et al. (2010) Variation in transcription factor binding among humans. Science 328: 232–235. doi: 10.1126/science.1183621
[24]
Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475–1489. doi: 10.1093/nar/11.5.1475
[25]
Butter F, Kappei D, Buchholz F, Vermeulen M, Mann M (2010) A domesticated transposon mediates the effects of a single-nucleotide polymorphism responsible for enhanced muscle growth. EMBO Rep 11: 305–311. doi: 10.1038/embor.2010.6
[26]
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol doi: 10.1038/nbt.1511
[27]
Yang D, Buchholz F, Huang Z, Goga A, Chen CY, et al. (2002) Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci U S A 99: 9942–9947. doi: 10.1073/pnas.152327299