全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2012 

Genetics and Regulatory Impact of Alternative Polyadenylation in Human B-Lymphoblastoid Cells

DOI: 10.1371/journal.pgen.1002882

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gene expression varies widely between individuals of a population, and regulatory change can underlie phenotypes of evolutionary and biomedical relevance. A key question in the field is how DNA sequence variants impact gene expression, with most mechanistic studies to date focused on the effects of genetic change on regulatory regions upstream of protein-coding sequence. By contrast, the role of RNA 3′-end processing in regulatory variation remains largely unknown, owing in part to the challenge of identifying functional elements in 3′ untranslated regions. In this work, we conducted a genomic survey of transcript ends in lymphoblastoid cells from genetically distinct human individuals. Our analysis mapped the cis-regulatory architecture of 3′ gene ends, finding that transcript end positions did not fall randomly in untranslated regions, but rather preferentially flanked the locations of 3′ regulatory elements, including miRNA sites. The usage of these transcript length forms and motifs varied across human individuals, and polymorphisms in polyadenylation signals and other 3′ motifs were significant predictors of expression levels of the genes in which they lay. Independent single-gene experiments confirmed the effects of polyadenylation variants on steady-state expression of their respective genes, and validated the regulatory function of 3′ cis-regulatory sequence elements that mediated expression of these distinct RNA length forms. Focusing on the immune regulator IRF5, we established the effect of natural variation in RNA 3′-end processing on regulatory response to antigen stimulation. Our results underscore the importance of two mechanisms at play in the genetics of 3′-end variation: the usage of distinct 3′-end processing signals and the effects of 3′ sequence elements that determine transcript fate. Our findings suggest that the strategy of integrating observed 3′-end positions with inferred 3′ regulatory motifs will prove to be a critical tool in continued efforts to interpret human genome variation.

References

[1]  Farber CR, Lusis AJ (2008) Integrating global gene expression analysis and genetics. Adv Genet 60: 571–601. doi: 10.1016/s0065-2660(07)00420-8
[2]  Rockman MV, Kruglyak L (2006) Genetics of global gene expression. Nat Rev Genet 7: 862–872. doi: 10.1038/nrg1964
[3]  Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M (2009) Mapping complex disease traits with global gene expression. Nat Rev Genet 10: 184–194. doi: 10.1038/nrg2537
[4]  Schadt EE (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461: 218–223. doi: 10.1038/nature08454
[5]  Rockman MV (2008) Reverse engineering the genotype-phenotype map with natural genetic variation. Nature 456: 738–744. doi: 10.1038/nature07633
[6]  Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, et al. (2008) High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet 4: e1000214 doi:10.1371/journal.pgen.1000214. doi: 10.1371/journal.pgen.1000214
[7]  Zheng W, Zhao H, Mancera E, Steinmetz LM, Snyder M (2010) Genetic analysis of variation in transcription factor binding in yeast. Nature 464: 1187–1191. doi: 10.1038/nature08934
[8]  Ronald J, Brem RB, Whittle J, Kruglyak L (2005) Local regulatory variation in Saccharomyces cerevisiae. PLoS Genet 1: e25 doi:10.1371/journal.pgen.0010025. doi: 10.1371/journal.pgen.0010025
[9]  GuhaThakurta D, Xie T, Anand M, Edwards SW, Li G, et al. (2006) Cis-regulatory variations: a study of SNPs around genes showing cis-linkage in segregating mouse populations. BMC Genomics 7: 235.
[10]  Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, et al. (2010) Variation in transcription factor binding among humans. Science 328: 232–235. doi: 10.1126/science.1183621
[11]  Nagarajan M, Veyrieras JB, de Dieuleveult M, Bottin H, Fehrmann S, et al. (2010) Natural single-nucleosome epi-polymorphisms in yeast. PLoS Genet 6: e1000913 doi:10.1371/journal.pgen.1000913. doi: 10.1371/journal.pgen.1000913
[12]  Johannes F, Colot V, Jansen RC (2008) Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet 9: 883–890. doi: 10.1038/nrg2467
[13]  Zhang X, Richards EJ, Borevitz JO (2007) Genetic and epigenetic dissection of cis regulatory variation. Curr Opin Plant Biol 10: 142–148. doi: 10.1016/j.pbi.2007.02.002
[14]  Zhang H, Lee JY, Tian B (2005) Biased alternative polyadenylation in human tissues. Genome Biol 6: R100. doi: 10.1186/gb-2005-6-12-r100
[15]  Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LR, et al. (2007) Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A 104: 6758–6763. doi: 10.1073/pnas.0701266104
[16]  Singh P, Alley TL, Wright SM, Kamdar S, Schott W, et al. (2009) Global changes in processing of mRNA 3′ untranslated regions characterize clinically distinct cancer subtypes. Cancer Res 69: 9422–9430. doi: 10.1158/0008-5472.can-09-2236
[17]  Flomen R, Makoff A (2011) Increased RNA editing in EAAT2 pre-mRNA from amyotrophic lateral sclerosis patients: involvement of a cryptic polyadenylation site. Neurosci Lett 497: 139–143. doi: 10.1016/j.neulet.2011.04.047
[18]  Chen JM, Ferec C, Cooper DN (2006) A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes I: general principles and overview. Hum Genet 120: 1–21. doi: 10.1007/s00439-006-0180-7
[19]  Danckwardt S, Hentze MW, Kulozik AE (2008) 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 27: 482–498. doi: 10.1038/sj.emboj.7601932
[20]  Wiestner A, Tehrani M, Chiorazzi M, Wright G, Gibellini F, et al. (2007) Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood 109: 4599–4606. doi: 10.1182/blood-2006-08-039859
[21]  Fraser HB, Xie X (2009) Common polymorphic transcript variation in human disease. Genome Res 19: 567–575. doi: 10.1101/gr.083477.108
[22]  Kwan T, Benovoy D, Dias C, Gurd S, Provencher C, et al. (2008) Genome-wide analysis of transcript isoform variation in humans. Nat Genet 40: 225–231. doi: 10.1038/ng.2007.57
[23]  Millevoi S, Vagner S (2010) Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res 38: 2757–2774. doi: 10.1093/nar/gkp1176
[24]  Moore MJ, Proudfoot NJ (2009) Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136: 688–700. doi: 10.1016/j.cell.2009.02.001
[25]  Tranter M, Helsley RN, Paulding WR, McGuinness M, Brokamp C, et al. (2011) Coordinated post-transcriptional regulation of HSP70.3 gene expression by micro-RNA and alternative polyadenylation. J Biol Chem doi: 10.1074/jbc.m111.221796
[26]  Lau AG, Irier HA, Gu J, Tian D, Ku L, et al. (2010) Distinct 3′UTRs differentially regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF). Proc Natl Acad Sci U S A 107: 15945–15950. doi: 10.1073/pnas.1002929107
[27]  An JJ, Gharami K, Liao GY, Woo NH, Lau AG, et al. (2008) Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 134: 175–187. doi: 10.1016/j.cell.2008.05.045
[28]  Al-Ahmadi W, Al-Ghamdi M, Al-Haj L, Al-Saif M, Khabar KS (2009) Alternative polyadenylation variants of the RNA binding protein, HuR: abundance, role of AU-rich elements and auto-Regulation. Nucleic Acids Res 37: 3612–3624. doi: 10.1093/nar/gkp223
[29]  Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320: 1643–1647. doi: 10.1126/science.1155390
[30]  Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33: 201–212. doi: 10.1093/nar/gki158
[31]  Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C, et al. (2008) MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic {beta}-actin gene. Nucleic Acids Res 36: 6318–6332. doi: 10.1093/nar/gkn624
[32]  Natalizio BJ, Muniz LC, Arhin GK, Wilusz J, Lutz CS (2002) Upstream elements present in the 3′-untranslated region of collagen genes influence the processing efficiency of overlapping polyadenylation signals. J Biol Chem 277: 42733–42740. doi: 10.1074/jbc.m208070200
[33]  Hall-Pogar T, Zhang H, Tian B, Lutz CS (2005) Alternative polyadenylation of cyclooxygenase-2. Nucleic Acids Res 33: 2565–2579. doi: 10.1093/nar/gki544
[34]  Liu D, Fritz DT, Rogers MB, Shatkin AJ (2008) Species-specific cis-regulatory elements in the 3′-untranslated region direct alternative polyadenylation of bone morphogenetic protein 2 mRNA. J Biol Chem 283: 28010–28019. doi: 10.1074/jbc.m804895200
[35]  Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138: 673–684. doi: 10.1016/j.cell.2009.06.016
[36]  Ji Z, Lee JY, Pan Z, Jiang B, Tian B (2009) Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci U S A 106: 7028–7033. doi: 10.1073/pnas.0900028106
[37]  Ji Z, Tian B (2009) Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS ONE 4: e8419 doi:10.1371/journal.pone.0008419. doi: 10.1371/journal.pone.0008419
[38]  Liu D, Brockman JM, Dass B, Hutchins LN, Singh P, et al. (2007) Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis. Nucleic Acids Res 35: 234–246. doi: 10.1093/nar/gkl919
[39]  Flavell SW, Kim TK, Gray JM, Harmin DA, Hemberg M, et al. (2008) Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60: 1022–1038. doi: 10.1016/j.neuron.2008.11.029
[40]  Fu Y, Sun Y, Li Y, Li J, Rao X, et al. (2011) Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Research 21: 741–747. doi: 10.1101/gr.115295.110
[41]  Jan CH, Friedman RC, Ruby JG, Bartel DP (2011) Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469: 97–101. doi: 10.1038/nature09616
[42]  Yoon OK, Brem RB (2011) Noncanonical transcript forms in yeast and their regulation during environmental stress. RNA 16: 1256–1267. doi: 10.1261/rna.2038810
[43]  Mangone M, Manoharan AP, Thierry-Mieg D, Thierry-Mieg J, Han T, et al. (2010) The landscape of C. elegans 3′UTRs. Science 329: 432–435. doi: 10.1126/science.1191244
[44]  Shepard PJ, Choi EA, Lu J, Flanagan LA, Hertel KJ, et al. (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17: 761–772. doi: 10.1261/rna.2581711
[45]  Ozsolak F, Kapranov P, Foissac S, Kim SW, Fishilevich E, et al. (2010) Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143: 1018–1029. doi: 10.1016/j.cell.2010.11.020
[46]  Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, et al. (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464: 768–772. doi: 10.1038/nature08872
[47]  Nam DK, Lee S, Zhou G, Cao X, Wang C, et al. (2002) Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription. Proc Natl Acad Sci U S A 99: 6152–6156. doi: 10.1073/pnas.092140899
[48]  Nunes NM, Li W, Tian B, Furger A (2010) A functional human Poly(A) site requires only a potent DSE and an A-rich upstream sequence. EMBO J 29: 1523–1536. doi: 10.1038/emboj.2010.42
[49]  Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM (2003) Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures. Nucleic Acids Res 31: 1375–1386. doi: 10.1093/nar/gkg241
[50]  Venkataraman K, Brown KM, Gilmartin GM (2005) Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 19: 1315–1327. doi: 10.1101/gad.1298605
[51]  Legendre M, Gautheret D (2003) Sequence determinants in human polyadenylation site selection. BMC Genomics 4: 7.
[52]  Chen K, Rajewsky N (2006) Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 38: 1452–1456. doi: 10.1038/ng1910
[53]  Gruber AR, Fallmann J, Kratochvill F, Kovarik P, Hofacker IL (2011) AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Res 39: D66–69. doi: 10.1093/nar/gkq990
[54]  Ara T, Lopez F, Ritchie W, Benech P, Gautheret D (2006) Conservation of alternative polyadenylation patterns in mammalian genes. BMC Genomics 7: 189. doi: 10.1186/1471-2164-7-189
[55]  Houlston RS, Cheadle J, Dobbins SE, Tenesa A, Jones AM, et al. (2010) Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet 42: 973–977. doi: 10.1038/ng.670
[56]  Kratochvill F, Machacek C, Vogl C, Ebner F, Sedlyarov V, et al. (2011) Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation. Mol Syst Biol 7: 560. doi: 10.1038/msb.2011.93
[57]  Gerondakis S, Grumont RJ, Banerjee A (2007) Regulating B-cell activation and survival in response to TLR signals. Immunol Cell Biol 85: 471–475. doi: 10.1038/sj.icb.7100097
[58]  Khabar KS (2007) Rapid transit in the immune cells: the role of mRNA turnover regulation. J Leukoc Biol 81: 1335–1344. doi: 10.1189/jlb.0207109
[59]  Koscielny G, Le Texier V, Gopalakrishnan C, Kumanduri V, Riethoven JJ, et al. (2009) ASTD: The Alternative Splicing and Transcript Diversity database. Genomics 93: 213–220. doi: 10.1016/j.ygeno.2008.11.003
[60]  de la Grange P, Dutertre M, Correa M, Auboeuf D (2007) A new advance in alternative splicing databases: from catalogue to detailed analysis of regulation of expression and function of human alternative splicing variants. BMC Bioinformatics 8: 180. doi: 10.1186/1471-2105-8-180
[61]  Legendre M, Ritchie W, Lopez F, Gautheret D (2006) Differential repression of alternative transcripts: a screen for miRNA targets. PLoS Comput Biol 2: e43 doi:10.1371/journal.pcbi.0020043. doi: 10.1371/journal.pcbi.0020043.eor
[62]  Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.
[63]  Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, et al. (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Res 39: D876–882. doi: 10.1093/nar/gkq963
[64]  Lee JY, Yeh I, Park JY, Tian B (2007) PolyA_DB 2: mRNA polyadenylation sites in vertebrate genes. Nucleic Acids Res 35: D165–168. doi: 10.1093/nar/gkl870
[65]  Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The human genome browser at UCSC. Genome Res 12: 996–1006. doi: 10.1101/gr.229102
[66]  Lynch M, Walsh B (1998) Genetics and Analysis of Quantitative Traits. Sunderland, MA: Sinauer Associates, Inc.
[67]  Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, et al. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27: 91–105. doi: 10.1016/j.molcel.2007.06.017
[68]  The 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073.
[69]  Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, et al. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320: 1344–1349. doi: 10.1126/science.1158441
[70]  Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18: 6069–6074. doi: 10.1093/nar/18.20.6069
[71]  Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, et al. (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35: W71–74. doi: 10.1093/nar/gkm306

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133