全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2012 

WNT16 Influences Bone Mineral Density, Cortical Bone Thickness, Bone Strength, and Osteoporotic Fracture Risk

DOI: 10.1371/journal.pgen.1002745

Full-Text   Cite this paper   Add to My Lib

Abstract:

We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ~2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of ?0.11 standard deviations [SD] per C allele, P = 6.2×10?9). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (?0.14 SD per C allele, P = 2.3×10?12, and ?0.16 SD per G allele, P = 1.2×10?15, respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10?9), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10?6 and rs2707466: OR = 1.22, P = 7.2×10?6). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16?/? mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%–61% (6.5×10?13

References

[1]  (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. The American journal of medicine 94: 646–650.
[2]  Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I, et al. (2000) Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int 11: 669–674.
[3]  Organization WH WHO scientific group on the assessment of osteoporosis at primary health care level; 2007 May 5; Brussels, Belgium.
[4]  Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, et al. (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. Journal of bone and mineral research 22: 465–475.
[5]  Gueguen R, Jouanny P, Guillemin F, Kuntz C, Pourel J, et al. (1995) Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res 10: 2017–2022.
[6]  Smith DM, Nance WE, Kang KW, Christian JC, Johnston CC Jr (1973) Genetic factors in determining bone mass. J Clin Invest 52: 2800–2808.
[7]  Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM, et al. (2007) Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC medical genetics 8: Suppl 1S14.
[8]  Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, et al. (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371: 1505–1512.
[9]  Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, et al. (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358: 2355–2365.
[10]  Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, et al. (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41: 1199–1206.
[11]  Duncan EL, Danoy P, Kemp JP, Leo PJ, McCloskey E, et al. (2011) Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet 7: e1001372. doi:10.1371/journal.pgen.1001372.
[12]  Guo Y, Tan LJ, Lei SF, Yang TL, Chen XD, et al. (2010) Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLoS Genet 6: e1000806. doi:10.1371/journal.pgen.1000806.
[13]  Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, et al. (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41: 527–534.
[14]  Paternoster L, Lorentzon M, Vandenput L, Karlsson MK, Ljunggren O, et al. (2010) Genome-wide association meta-analysis of cortical bone mineral density unravels allelic heterogeneity at the RANKL locus and potential pleiotropic effects on bone. PLoS Genet 6: e1001217. doi:10.1371/journal.pgen.1001217.
[15]  Johnell O, Kanis J (2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16: Suppl 2S3–7.
[16]  Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, et al. (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375: 1729–1736.
[17]  Holzer G, von Skrbensky G, Holzer LA, Pichl W (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res 24: 468–474.
[18]  Johannesdottir F, Poole KE, Reeve J, Siggeirsdottir K, Aspelund T, et al. (2011) Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK Study. Bone 48: 1268–1276.
[19]  Havill LM, Mahaney MC, T LB, Specker BL (2007) Effects of genes, sex, age, and activity on BMC, bone size, and areal and volumetric BMD. J Bone Miner Res 22: 737–746.
[20]  Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299: 1335–1344.
[21]  Michaelsson K, Melhus H, Ferm H, Ahlbom A, Pedersen NL (2005) Genetic liability to fractures in the elderly. Archives of internal medicine 165: 1825–1830.
[22]  Andrew T, Antioniades L, Scurrah KJ, Macgregor AJ, Spector TD (2005) Risk of wrist fracture in women is heritable and is influenced by genes that are largely independent of those influencing BMD. Journal of bone and mineral research 20: 67–74.
[23]  Zheng HF, Spector TD, Richards JB (2011) Insights into the genetics of osteoporosis from recent genome-wide association studies. Expert reviews in molecular medicine 13: e28.
[24]  Duncan EL, Brown MA (2010) Genetic determinants of bone density and fracture risk–state of the art and future directions. The Journal of clinical endocrinology and metabolism 95: 2576–2587.
[25]  Qiu C, Papasian CJ, Deng HW, Shen H (2011) Genetics of osteoporotic fracture. Orthop Res Rev 3: 11–21.
[26]  Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, et al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107: 513–523.
[27]  Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, et al. (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346: 1513–1521.
[28]  Clements WK, Kim AD, Ong KG, Moore JC, Lawson ND, et al. (2011) A somitic Wnt16/Notch pathway specifies haematopoietic stem cells. Nature 474: 220–224.
[29]  Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, et al. (2004) Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev 18: 2404–2417.
[30]  Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, et al. (2009) New sequence variants associated with bone mineral density. Nature genetics 41: 15–17.
[31]  Hudelmaier M, Kuhn V, Lochmuller EM, Well H, Priemel M, et al. (2004) Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)? Osteoporos Int 15: 375–381.
[32]  Melton LJ 3rd, Riggs BL, van Lenthe GH, Achenbach SJ, Muller R, et al. (2007) Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res 22: 1442–1448.
[33]  Katahira T, Nakagiri S, Terada K, Furukawa T (2010) Secreted factor FAM3C (ILEI) is involved in retinal laminar formation. Biochemical and biophysical research communications 392: 301–306.
[34]  Ralston SH, Uitterlinden AG, Brandi ML, Balcells S, Langdahl BL, et al. (2006) Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS Med 3: e90. doi:10.1371/journal.pmed.0030090.
[35]  Ioannidis JP, Ralston SH, Bennett ST, Brandi ML, Grinberg D, et al. (2004) Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA 292: 2105–2114.
[36]  Richards JB, Kavvoura FK, Rivadeneira F, Styrkarsdottir U, Estrada K, et al. (2009) Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Annals of internal medicine 151: 528–537.
[37]  Zhang LS, Hu HG, Liu YJ, Li J, Yu P, et al. (2011) A follow-up association study of two genetic variants for bone mineral density variation in Caucasians. Osteoporos Int.
[38]  Tayo BO, Luke A, Zhu X, Adeyemo A, Cooper RS (2009) Association of regions on chromosomes 6 and 7 with blood pressure in Nigerian families. Circulation Cardiovascular genetics 2: 38–45.
[39]  Lorentzon M, Swanson C, Andersson N, Mellstrom D, Ohlsson C (2005) Free testosterone is a positive, whereas free estradiol is a negative, predictor of cortical bone size in young Swedish men: the GOOD study. J Bone Miner Res 20: 1334–1341.
[40]  Lorentzon M, Mellstrom D, Ohlsson C (2005) Age of attainment of peak bone mass is site specific in Swedish men―The GOOD Study. J Bone Miner Res 20: 1223–1227.
[41]  Li Y, Abecasis GR (2006) Mach 1.0: Rapid Haplotype Reconstruction and Missing Genotype Inference. Am J Hum Genet S79: 2290.
[42]  Raitakari OT, Juonala M, Ronnemaa T, Keltikangas-Jarvinen L, Rasanen L, et al. (2008) Cohort profile: the cardiovascular risk in Young Finns Study. Int J Epidemiol 37: 1220–1226.
[43]  Laaksonen M, Sievanen H, Tolonen S, Mikkila V, Rasanen L, et al. (2010) Determinants of bone strength and fracture incidence in adult Finns: Cardiovascular Risk in Young Finns Study (the GENDI pQCT study). Arch Osteoporosis 5: 119–130.
[44]  Golding J, Pembrey M, Jones R (2001) ALSPAC–the Avon Longitudinal Study of Parents and Children. I. Study methodology. Paediatr Perinat Epidemiol 15: 74–87.
[45]  Jones RW, Ring S, Tyfield L, Hamvas R, Simmons H, et al. (2000) A new human genetic resource: a DNA bank established as part of the Avon longitudinal study of pregnancy and childhood (ALSPAC). Eur J Hum Genet 8: 653–660.
[46]  Mellstrom D, Johnell O, Ljunggren O, Eriksson AL, Lorentzon M, et al. (2006) Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res 21: 529–535.
[47]  Andrew T, Hart DJ, Snieder H, de Lange M, Spector TD, et al. (2001) Are twins and singletons comparable? A study of disease-related and lifestyle characteristics in adult women. Twin research 4: 464–477.
[48]  Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5: e1000529. doi:10.1371/journal.pgen.1000529.
[49]  Streeten EA, McBride DJ, Pollin TI, Ryan K, Shapiro J, et al. (2006) Quantitative trait loci for BMD identified by autosome-wide linkage scan to chromosomes 7q and 21q in men from the Amish Family Osteoporosis Study. Journal of bone and mineral research 21: 1433–1442.
[50]  Streeten EA, McBride DJ, Lodge AL, Pollin TI, Stinchcomb DG, et al. (2004) Reduced incidence of hip fracture in the Old Order Amish. Journal of bone and mineral research 19: 308–313.
[51]  Ohlsson C, Darelid A, Nilsson M, Melin J, Mellstrom D, et al. (2011) Cortical consolidation due to increased mineralization and endosteal contraction in young adult men: a five-year longitudinal study. J Clin Endocrinol Metab 96: 2262–2269.
[52]  Sims AM, Shephard N, Carter K, Doan T, Dowling A, et al. (2008) Genetic analyses in a sample of individuals with high or low BMD shows association with multiple Wnt pathway genes. Journal of bone and mineral research 23: 499–506.
[53]  Englund U, Nordstrom P, Nilsson J, Bucht G, Bjornstig U, et al. (2011) Physical activity in middle-aged women and hip fracture risk: the UFO study. Osteoporosis international 22: 499–505.
[54]  Hallmans G, Agren A, Johansson G, Johansson A, Stegmayr B, et al. (2003) Cardiovascular disease and diabetes in the Northern Sweden Health and Disease Study Cohort - evaluation of risk factors and their interactions. Scandinavian journal of public health Supplement 6118–24.
[55]  Richards JB, Papaioannou A, Adachi JD, Joseph L, Whitson HE, et al. (2007) Effect of selective serotonin reuptake inhibitors on the risk of fracture. Archives of internal medicine 167: 188–194.
[56]  Ladouceur M, Leslie WD, Dastani Z, Goltzman D, Richards JB (2010) An efficient paradigm for genetic epidemiology cohort creation. PLoS ONE 5: e14045. doi:10.1371/journal.pone.0014045.
[57]  Aulchenko YS, Struchalin MV, van Duijn CM (2010) ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11: 134.
[58]  Estrada K, Abuseiris A, Grosveld FG, Uitterlinden AG, Knoch TA, et al. (2009) GRIMP: a web- and grid-based tool for high-speed analysis of large-scale genome-wide association using imputed data. Bioinformatics 25: 2750–2752.
[59]  Magi R, Morris AP (2010) GWAMA: software for genome-wide association meta-analysis. BMC bioinformatics 11: 288.
[60]  Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JP (2009) Discovery properties of genome-wide association signals from cumulatively combined data sets. American journal of epidemiology 170: 1197–1206.
[61]  Devlin B, Roeder K, Wasserman L (2001) Genomic control, a new approach to genetic-based association studies. Theoretical population biology 60: 155–166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133