[1] | Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, et al. (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465: 627–631. doi: 10.1038/nature08800
|
[2] | Dworkin I (2005) Canalization, cryptic variation, and developmental buffering: A critical examination and analytical perspective. Review Literature And Arts Of The Americas Chapter 8 in: Variation 131–158. doi: 10.1016/b978-012088777-4/50010-7
|
[3] | Hill WG, Mulder H (2010) Genetic analysis of environmental variation. Genetics Research, Cambridge 92: 381–395. doi: 10.1017/s0016672310000546
|
[4] | Kitano H (2004) Biological robustness. Nature Reviews Genetics 5: 826–837. doi: 10.1038/nrg1471
|
[5] | Rutherford S, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342. doi: 10.1038/24550
|
[6] | Dworkin I, Palsson A, Birdsall K, Gibson G (2003) Evidence that Egfr contributes to cryptic genetic variation for photoreceptor determination in natural populations of Drosophila melanogaster. Current Biology 13: 1888–1893. doi: 10.1016/j.cub.2003.10.001
|
[7] | Mackay TF, Lyman RF (2005) Drosophila bristles and the nature of quantitative genetic variation. Philosophical Transactions of the Royal Society, Series B 360: 1513–1527. doi: 10.1098/rstb.2005.1672
|
[8] | Weller JI, Soller M, Brody T (1988) Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum × Lycopersicon pimpinellifolium) by means of genetic markers. Genetics 118: 329–339.
|
[9] | Hall MC, Dworkin I, Ungerer MC, Purugganan M (2007) Genetics of microenvironmental canalization in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 104: 13717–13722. doi: 10.1073/pnas.0701936104
|
[10] | Ordas B, Malvar RA, Hill WG (2008) Genetic variation and quantitative trait loci associated with developmental stability and the environmental correlation between traits in maize. Genetics Research, Cambridge 90: 385–395. doi: 10.1017/s0016672308009762
|
[11] | Jimenez-Gomez JM, Corwin JA, Joseph B, Maloof JN, Kliebenstein DJ (2011) Genomic analysis of QTLs and genes altering natural variation in stochastic noise. PLoS Genetics 7: e1002295. doi: 10.1371/journal.pgen.1002295
|
[12] | Fraser H, Schadt E (2010) The quantitative genetics of phenotypic robustness. PLoS ONE 5: e8635. doi: 10.1371/journal.pone.0008635
|
[13] | Deng WQ, Paré G (2011) A fast algorithm to optimize SNP prioritization for gene-gene and geneenvironment interactions. Genetic Epidemiology 35: 729–38. doi: 10.1002/gepi.20624
|
[14] | R?nneg?rd L, Valdar W (2011) Detecting major genetic loci controlling phenotypic variability in experimental crosses. Genetics 188: 435–447. doi: 10.1534/genetics.111.127068
|
[15] | Paré G, Cook NR, Ridker PM, Chasman DI (2010) On the use of variance per genotype as a tool to identify quantitative trait interaction effects: a report from the women's genome health study. PLoS Genetics 6: e1000981. doi: 10.1371/journal.pgen.1000981
|
[16] | Struchalin MV, Dehghan A, Witteman JCM, Duijn CV, Aulchenko YS (2010) Variance heterogeneity analysis for detection of potentially interacting genetic loci: method and its limitations. BMC Genetics 11: 92. doi: 10.1186/1471-2156-11-92
|
[17] | Zhang X, Hill WG (2005) Genetic variability under mutation selection balance. Trends in Ecology and Evolution 20: 468–470. doi: 10.1016/j.tree.2005.06.010
|
[18] | Zhang X (2005) Evolution and maintenance of the environmental component of the phenotypic variance: Benefit of plastic traits under changing environments. The American Naturalist 166: 569–580. doi: 10.1086/491800
|
[19] | Zhang X, Hill WG (2005) Evolution of the environmental component of the phenotypic variance: stabilizing selection in changing environments and the cost of homogeneity. Evolution 59: 1237–1244. doi: 10.1111/j.0014-3820.2005.tb01774.x
|
[20] | Zhang X, Hill WG (2008) Mutation-selection balance for environmental variance. The American Naturalist 171: 394–399. doi: 10.1086/527503
|
[21] | Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55: 997–1004. doi: 10.1111/j.0006-341x.1999.00997.x
|
[22] | Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, et al. (2008) Efficient control of population structure in model organism association mapping. Genetics 178: 1709–23. doi: 10.1534/genetics.107.080101
|
[23] | Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, et al. (2010) Variance component model to account for sample structure in genome-wide association studies. Nature Genetics 42: 348–54. doi: 10.1038/ng.548
|
[24] | Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, et al. (2007) An Ara-bidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proceedings of the National Academy of Sciences, USA 104: 18807–18812. doi: 10.1073/pnas.0706373104
|
[25] | Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B, et al. (2008) Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genetics 4: e1000004. doi: 10.1371/journal.pgen.1000004
|
[26] | Anderson KV, Ingham PW (2003) The transformation of the model organism: a decade of developmental genetics. Nature Genetics 33: Suppl 285–293. doi: 10.1038/ng1105
|
[27] | Freeman M (2000) Signalling in development. Nature 408: 313–319. doi: 10.1038/35042500
|
[28] | Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405: 590–593. doi: 10.1038/35014651
|
[29] | Seo E, Lee H, Jeon J, Park H, Kim J, et al. (2009) Crosstalk between cold response and owering in Arabidopsis is mediated through the owering-time gene SOC1 and its upstream negative regulator FLC. The Plant Cell 21: 3185–3197. doi: 10.1105/tpc.108.063883
|
[30] | Michaels S, Amasino R (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of owering. The Plant Cell 11: 949–956. doi: 10.1105/tpc.11.5.949
|
[31] | Devaux C, Lande R (2010) Selection on variance in owering time within and among individuals. Evolution 64: 1311–1320. doi: 10.1111/j.1558-5646.2009.00895.x
|
[32] | Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, et al. (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining variation in owering time of arabidopsis. Plant Physiology 138: 1163–1173. doi: 10.1104/pp.105.061309
|
[33] | Conte M, de Simone S, Simmons SJ, Ballaré CL, Stapleton AE (2010) Chromosomal loci important for cotyledon opening under UV-B in Arabidopsis thaliana. BMC Plant Biology 10: 112. doi: 10.1186/1471-2229-10-112
|
[34] | Price TD, Qvarnstr?m A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society, Series B 270: 1433–40. doi: 10.1098/rspb.2003.2372
|
[35] | Haldane J (1930) A mathematical theory of natural and artificial selection. vii. selection intensity as a function of mortality rate. Mathematical Proceedings of the Cambridge Philosophical Society 27: 131–136. doi: 10.1017/s0305004100009427
|
[36] | Aulchenko Y, Ripke S, Isaacs A, van Duijn C (2007) GenABEL: an R package for genome-wide association analysis. Bioinformatics 23: 1294–1296. doi: 10.1093/bioinformatics/btm108
|
[37] | Grennan A (2006) Variations on a theme. regulation of owering time in Arabidopsis. Plant Physiology 140: 399–400. doi: 10.1104/pp.104.900184
|