全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2012 

Controls of Nucleosome Positioning in the Human Genome

DOI: 10.1371/journal.pgen.1003036

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nucleosomes are important for gene regulation because their arrangement on the genome can control which proteins bind to DNA. Currently, few human nucleosomes are thought to be consistently positioned across cells; however, this has been difficult to assess due to the limited resolution of existing data. We performed paired-end sequencing of micrococcal nuclease-digested chromatin (MNase–seq) from seven lymphoblastoid cell lines and mapped over 3.6 billion MNase–seq fragments to the human genome to create the highest-resolution map of nucleosome occupancy to date in a human cell type. In contrast to previous results, we find that most nucleosomes have more consistent positioning than expected by chance and a substantial fraction (8.7%) of nucleosomes have moderate to strong positioning. In aggregate, nucleosome sequences have 10 bp periodic patterns in dinucleotide frequency and DNase I sensitivity; and, across cells, nucleosomes frequently have translational offsets that are multiples of 10 bp. We estimate that almost half of the genome contains regularly spaced arrays of nucleosomes, which are enriched in active chromatin domains. Single nucleotide polymorphisms that reduce DNase I sensitivity can disrupt the phasing of nucleosome arrays, which indicates that they often result from positioning against a barrier formed by other proteins. However, nucleosome arrays can also be created by DNA sequence alone. The most striking example is an array of over 400 nucleosomes on chromosome 12 that is created by tandem repetition of sequences with strong positioning properties. In summary, a large fraction of nucleosomes are consistently positioned—in some regions because they adopt favored sequence positions, and in other regions because they are forced into specific arrangements by chromatin remodeling or DNA binding proteins.

References

[1]  Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184: 868–871. doi: 10.1126/science.184.4139.868
[2]  Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98: 285–294. doi: 10.1016/s0092-8674(00)81958-3
[3]  John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, et al. (2011) Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 43: 264–8. doi: 10.1038/ng.759
[4]  Kaplan T, Li XY, Sabo PJ, Thomas S, Stamatoyannopoulos JA, et al. (2011) Quantitative Models of the Mechanisms That Control Genome-Wide Patterns of Transcription Factor Binding during Early Drosophila Development. PLoS Genet 7: e1001290 doi:10.1371/journal.pgen.1001290.
[5]  Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, et al. (2007) Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446: 572–576. doi: 10.1038/nature05632
[6]  Kaplan N, Hughes TR, Lieb JD, Widom J, Segal E (2010) Contribution of histone sequence preferences to nucleosome organization: proposed definitions and methodology. Genome Biol 11: 140. doi: 10.1186/gb-2010-11-11-140
[7]  Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276: 19–42. doi: 10.1006/jmbi.1997.1494
[8]  Th?str?m A, Lowary PT, Widlund HR, Cao H, Kubista M, et al. (1999) Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J Mol Biol 288: 213–229. doi: 10.1006/jmbi.1999.2686
[9]  Iyer V, Struhl K (1995) Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J 14: 2570–2579.
[10]  Struhl K (1985) Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci USA 82: 8419–8423. doi: 10.1073/pnas.82.24.8419
[11]  Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, et al. (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309: 626–630. doi: 10.1126/science.1112178
[12]  Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, et al. (2008) Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 4: e1000216 doi:10.1371/journal.pcbi.1000216.
[13]  Tillo D, Hughes TR (2009) G+C content dominates intrinsic nucleosome occupancy. BMC Bioinformatics 10: 442. doi: 10.1186/1471-2105-10-442
[14]  Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, et al. (2011) Determinants of nucleosome organization in primary human cells. Nature 474: 516–520. doi: 10.1038/nature10002
[15]  Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191: 659–675. doi: 10.1016/0022-2836(86)90452-3
[16]  Segal E, Fondufe-Mittendorf Y, Chen L, Th?str?m A, Field Y, et al. (2006) A genomic code for nucleosome positioning. Nature 442: 772–778. doi: 10.1038/nature04979
[17]  Widlund HR, Cao H, Simonsson S, Magnusson E, Simonsson T, et al. (1997) Identification and characterization of genomic nucleosome-positioning sequences. J Mol Biol 267: 807–817. doi: 10.1006/jmbi.1997.0916
[18]  Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, et al. (2008) Nucleosome organization in the Drosophila genome. Nature 453: 358–362. doi: 10.1038/nature06929
[19]  Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, et al. (2008) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18: 1073–1083. doi: 10.1101/gr.078261.108
[20]  Wasson T, Hartemink AJ (2009) An ensemble model of competitive multi-factor binding of the genome. Genome Res 19: 2101–2112. doi: 10.1101/gr.093450.109
[21]  Cairns BR (2009) The logic of chromatin architecture and remodelling at promoters. Nature 461: 193–198. doi: 10.1038/nature08450
[22]  Kornberg RD, Stryer L (1988) Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Research 16: 6677–6690. doi: 10.1093/nar/16.14.6677
[23]  Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, et al. (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132: 887–898. doi: 10.1016/j.cell.2008.02.022
[24]  Zhang Y, Moqtaderi Z, Rattner BP, Euskirchen G, Snyder M, et al. (2009) Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol 16: 847–852. doi: 10.1038/nsmb.1636
[25]  Sasaki S, Mello CC, Shimada A, Nakatani Y, Hashimoto SI, et al. (2009) Chromatin-Associated Periodicity in Genetic Variation Downstream of Transcriptional Start Sites. Science 323: 401–4. doi: 10.1126/science.1163183
[26]  Fu Y, Sinha M, Peterson CL, Weng Z (2008) The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 4: e1000138 doi:10.1371/journal.pgen.1000138.
[27]  Kaplan N, Moore I, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, et al. (2010) Nucleosome sequence preferences influence in vivo nucleosome organization. Nat Struct Mol Biol 17: 918–20 author reply 920–2. doi: 10.1038/nsmb0810-918
[28]  ENCODE Project Consortium (2011) Myers RM, Stamatoyannopoulos J, Snyder M, Dunham I, et al. (2011) A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9: e1001046 doi:10.1371/journal.pbio.1001046.
[29]  Pique-Regi R, Degner JF, Pai AA, Gaffney DJ, Gilad Y, et al. (2011) Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res 21: 447–55. doi: 10.1101/gr.112623.110
[30]  Degner JF, Pai AA, Pique-Regi R, Veyrieras JB, Gaffney DJ, et al. (2012) DNase?I sensitivity QTLs are a major determinant of human expression variation. Nature 482: 390–394. doi: 10.1038/nature10808
[31]  Genomes Project Consortium (2010) Durbin RM, Abecasis GR, Altshuler DL, Auton A, et al. (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073.
[32]  Noll M (1974) Subunit structure of chromatin. Nature 251: 249–251. doi: 10.1038/251249a0
[33]  Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, et al. (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458: 362–366. doi: 10.1038/nature07667
[34]  Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, et al. (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132: 311–322. doi: 10.1016/j.cell.2007.12.014
[35]  Cousins DJ, Islam SA, Sanderson MR, Proykova YG, Crane-Robinson C, et al. (2004) Redefinition of the cleavage sites of DNase I on the nucleosome core particle. J Mol Biol 335: 1199–1211. doi: 10.1016/j.jmb.2003.11.052
[36]  Klug A, Lutter LC (1981) The helical periodicity of DNA on the nucleosome. Nucleic Acids Research 9: 4267–4283. doi: 10.1093/nar/9.17.4267
[37]  Lutter LC (1979) Precise location of DNase I cutting sites in the nucleosome core determined by high resolution gel electrophoresis. Nucleic Acids Research 6: 41–56. doi: 10.1093/nar/6.1.41
[38]  Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, et al. (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473: 43–49. doi: 10.1038/nature09906
[39]  Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27: 573–580. doi: 10.1093/nar/27.2.573
[40]  Kundaje A, Kyriazopoulou-Panagiotopoulou S, Libbrecht M, Smith CL, Raha D, et al. (2012) Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements. Genome Res 22: 1735–1747. doi: 10.1101/gr.136366.111
[41]  Lai WK, Buck MJ (2010) ArchAlign: coordinate-free chromatin alignment reveals novel architectures. Genome Biol 11: R126. doi: 10.1186/gb-2010-11-12-r126
[42]  Tillo D, Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, et al. (2010) High nucleosome occupancy is encoded at human regulatory sequences. PLoS ONE 5: e9129 doi:10.1371/journal.pone.0009129.
[43]  Pennings S, Meersseman G, Bradbury EM (1991) Mobility of positioned nucleosomes on 5 S rDNA. J Mol Biol 220: 101–110. doi: 10.1016/0022-2836(91)90384-i
[44]  Dong F, Hansen JC, Van Holde KE (1990) DNA and protein determinants of nucleosome positioning on sea urchin 5S rRNA gene sequences in vitro. Proc Natl Acad Sci USA 87: 5724–5728. doi: 10.1073/pnas.87.15.5724
[45]  Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, et al. (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18: 1051–1063. doi: 10.1101/gr.076463.108
[46]  Brogaard K, Liqun X, Wang JP, Widom J (2012) A base pair resolution map of nucleosome positions in yeast. Nature 486: 496–501. doi: 10.1038/nature11142
[47]  Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, et al. (2011) A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332: 977–980. doi: 10.1126/science.1200508
[48]  Gkikopoulos T, Schofield P, Singh V, Pinskaya M, Mellor J, et al. (2011) A Role for Snf2-Related Nucleosome-Spacing Enzymes in Genome-Wide Nucleosome Organization. Science 333: 1758–1760. doi: 10.1126/science.1206097
[49]  Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324
[50]  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. doi: 10.1093/bioinformatics/btp352
[51]  Chung HR, Dunkel I, Heise F, Linke C, Krobitsch S, et al. (2010) The effect of micrococcal nuclease digestion on nucleosome positioning data. PLoS ONE 5: e15754 doi:10.1371/journal.pone.0015754.
[52]  Dingwall C, Lomonossoff GP, Laskey RA (1981) High sequence specificity of micrococcal nuclease. Nucleic Acids Research 9: 2659–2673. doi: 10.1093/nar/9.12.2659
[53]  Allan J, Fraser RM, Owen-Hughes T, Keszenman-Pereyra D (2012) Micrococcal nuclease does not substantially bias nucleosome mapping. J Mol Biol 417: 152–164. doi: 10.1016/j.jmb.2012.01.043
[54]  Pickrell JK, Gaffney DJ, Gilad Y, Pritchard JK (2011) False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions. Bioinformatics 27: 2144–2146. doi: 10.1093/bioinformatics/btr354
[55]  Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100: 9440–9445. doi: 10.1073/pnas.1530509100
[56]  Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: R137. doi: 10.1186/gb-2008-9-9-r137
[57]  Guan Y, Stephens M (2008) Practical issues in imputation-based association mapping. PLoS Genet 4: e1000279 doi:10.1371/journal.pgen.1000279.
[58]  Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78: 629–644. doi: 10.1086/502802

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133