Background Leptospirosis, a spirochaetal zoonotic disease, is the cause of epidemics associated with high mortality in urban slum communities. Infection with pathogenic Leptospira occurs during environmental exposures and is traditionally associated with occupational risk activities. However, slum inhabitants reside in close proximity to environmental sources of contamination, suggesting that transmission during urban epidemics occurs in the household environment. Methods and Findings A survey was performed to determine whether Leptospira infection clustered within households located in slum communities in the city of Salvador, Brazil. Hospital-based surveillance identified 89 confirmed cases of leptospirosis during an outbreak. Serum samples were obtained from members of 22 households with index cases of leptospirosis and 52 control households located in the same slum communities. The presence of anti-Leptospira agglutinating antibodies was used as a marker for previous infection. In households with index cases, 22 (30%) of 74 members had anti-Leptospira antibodies, whereas 16 (8%) of 195 members from control households had anti-Leptospira antibodies. Highest titres were directed against L. interrogans serovars of the Icterohaemorrhagiae serogroup in 95% and 100% of the subjects with agglutinating antibodies from case and control households, respectively. Residence in a household with an index case of leptospirosis was associated with increased risk (OR 5.29, 95% CI 2.13–13.12) of having had a Leptospira infection. Increased infection risk was found for all age groups who resided in a household with an index case, including children <15 years of age (P = 0.008). Conclusions This study identified significant household clustering of Leptospira infection in slum communities where recurrent epidemics of leptospirosis occur. The findings support the hypothesis that the household environment is an important transmission determinant in the urban slum setting. Prevention therefore needs to target sources of contamination and risk activities which occur in the places where slum inhabitants reside.
References
[1]
McBride AJ, Athanazio DA, Reis MG, Ko AI (2005) Leptospirosis. Curr Opin Infect Dis 18: 376–386. doi: 10.1097/01.qco.0000178824.05715.2c
[2]
World Health Organization (1999) Leptospirosis worldwide, 1999. Wkly Epidemiol Rec 74: 237–242.
Katz AR, Ansdell VE, Effler PV, Middleton CR, Sasaki DM (2002) Leptospirosis in Hawaii, 1974-1998: Epidemiologic analysis of 353 laboratory-confirmed cases. American Journal of Tropical Medicine and Hygiene 66: 61–70.
[5]
Haake DA, Dundoo M, Cader R, Kubak BM, Hartskeerl RA, et al. (2002) Leptospirosis, water sports, and chemoprophylaxis. Clin Infect Dis 34: e40–e43. doi: 10.1086/339942
[6]
Morgan J, Bornstein SL, Karpati AM, Bruce M, Bolin CA, et al. (2002) Outbreak of leptospirosis among triathlon participants and community residents in Springfield, Illinois, 1998. Clinical Infectious Diseases 34: 1593–1599. doi: 10.1086/340615
[7]
Sejvar J, Bancroft E, Winthrop K, Bettinger J, Bajani M, et al. (2003) Leptospirosis in “Eco-Challenge” athletes, Malaysian Borneo, 2000. Emerg Infect Dis 9: 702–707. doi: 10.3201/eid0906.020751
[8]
Faine SB, Adler B, Bolin C, Perolat P (1999) Leptospira and leptospirosis. Melbourne, Australia: MediSci.
[9]
Ko AI, Galvao Reis M, Ribeiro Dourado CM, Johnson WD Jr, Riley LW (1999) Urban epidemic of severe leptospirosis in Brazil. Salvador Leptospirosis Study Group. Lancet 354: 820–825. doi: 10.1016/S0140-6736(99)80012-9
[10]
Riley LW, Ko AI, Unger A, Reis MG (2007) Slum health: Diseases of neglected populations. BMC Int Health Hum Rights 7: 2. doi: 10.1186/1472-698X-7-2
[11]
United Nations (2003) The challenge of slums: global report on human settlements: UN-Habitat.
[12]
Ganoza CA, Matthias MA, Collins-Richards D, Brouwer KC, Cunningham CB, et al. (2006) Determining risk for severe leptospirosis by molecular analysis of environmental furface waters for pathogenic Leptospira. PLoS Med 3: e308. doi:10.1371/journal.pmed.0030308. doi: 10.1371/journal.pmed.0030308
[13]
Barcellos C, Chagastelles Sabroza P (2000) Socio-environmental determinants of the leptospirosis outbreak of 1996 in western Rio de Janeiro: A geographical approach. Int J Environ Health Res 10: 301–313. doi: 10.1080/0960312002001500
[14]
Tassinari WS, Pellegrini DCP, Sabroza PC, Carvalho MS (2004) [Spatial distribution of leptospirosis in the city of Rio de Janeiro, Brazil, 1996–1999]. Cad Saude Publica 20: 1721–1729. doi: /S0102-311X2004000600031
[15]
Romero EC, Bernardo CC, Yasuda PH (2003) Human leptospirosis: A twenty-nine-year serological study in Sao Paulo, Brazil. Rev Inst Med Trop Sao Paulo 45: 245–248. doi: 10.1590/S0036-46652003000500002
[16]
Kupek E, de Sousa Santos Faversani MC, de Souza Philippi JM (2000) The relationship between rainfall and human leptospirosis in Florianopolis, Brazil, 1991–1996. Braz J Infect Dis 4: 131–134.
[17]
Barcellos C, Sabroza PC (2001) The place behind the case: leptospirosis risks and associated environmental conditions in a flood-related outbreak in Rio de Janeiro. Cad Saude Publica 17: 59–67. doi: 10.1590/s0102-311x2001000700014
[18]
Karande S, Kulkarni H, Kulkarni M, De A, Varaiya A (2002) Leptospirosis in children in Mumbai slums. Indian J Pediatr 69: 855–858. doi: 10.1007/BF02723705
[19]
Sarkar U, Nascimento SF, Barbosa R, Martins R, Nuevo H, et al. (2002) Population-based case-control investigation of risk factors for leptospirosis during an urban epidemic. Am J Trop Med Hyg 66: 605–610.
[20]
Faine S, World Health Organization, editors (1982) Guidelines for the control of leptospirosis. Geneva: World Health Organization.
[21]
World Health Organization (2003) Human leptospirosis: Guidance for diagnosis, surveillance and control. Geneva: World Health Organization & International Leptospirosis Society.
[22]
Everard CO, Maude GH, Hayes RJ (1990) Leptospiral infection: A household serosurvey in urban and rural communities in Barbados and Trinidad. Ann Trop Med Parasitol 84: 255–266.
[23]
Silva HR, Tavares-Neto J, Bina JC, Meyer R (2003) [Leptospiral infection and subclinical presentation among children in Salvador, Bahia]. Rev Soc Bras Med Trop 36: 227–233. doi: 10.1590/S0037-86822003000200006
[24]
Barocchi MA, Ko AI, Ramos FS, Faria MT, Reis MG, et al. (2001) Identification of new repetitive element in Leptospira interrogans serovar Copenhageni and its application to PCR-based differentiation of Leptospira serogroups. Journal of Clinical Microbiology 39: 191–195. doi: 10.1128/JCM.39.1.191-195.2001
[25]
Katz AR, Effler PV, Ansdell VE (2003) Comparison of serology and isolates for the identification of infecting leptospiral serogroups in Hawaii, 1979–1998. Trop Med Int Health 8: 639–642. doi: 10.1046/j.1365-3156.2003.01071.x
[26]
Levett PN (2003) Usefulness of serologic analysis as a predictor of the infecting serovar in patients with severe leptospirosis. Clin Infect Dis 36: 447–452. doi: 10.1086/346208
[27]
Cumberland P, Everard COR, Wheeler JG, Levett PN (2001) Persistence of anti-leptospiral IgM, IgG and agglutinating antibodies in patients presenting with acute febrile illness in Barbados 1979–1989. European Journal of Epidemiology 17: 601–608. doi: 10.1023/A:1015509105668
[28]
Lupidi R, Cinco M, Balanzin D, Delprete E, Varaldo PE (1991) Serological follow-up of patients involved in a localized outbreak of leptospirosis. J Clin Microbiol 29: 805–809.
[29]
Ashford DA, Kaiser RM, Spiegel RA, Perkins BA, Weyant RS, et al. (2000) Asymptomatic infection and risk factors for leptospirosis in Nicaragua. Am J Trop Med Hyg 63: 249–254.
[30]
Phraisuwan P, Whitney EA, Tharmaphornpilas P, Guharat S, Thongkamsamut S, et al. (2002) Leptospirosis: Skin wounds and control strategies, Thailand, 1999. Emerg Infect Dis 8: 1455–1459. doi: 10.3201/eid0812.020180
[31]
Lingappa J, Kuffner T, Tappero J, Whitworth W, Mize A, et al. (2004) HLA-DQ6 and ingestion of contaminated water: Possible gene-environment interaction in an outbreak of Leptospirosis. Genes Immun 5: 197–202. doi: 10.1038/sj.gene.6364058
[32]
Smythe LD, Smith IL, Smith GA, Dohnt MF, Symonds ML, et al. (2002) A quantitative PCR (TaqMan) assay for pathogenic Leptospira spp. BMC Infect Dis 2: 13. doi: 10.1186/1471-2334-2-13
[33]
Wangroongsarb P, Chanket T, Gunlabun K, Long do H, Satheanmethakul P, et al. (2007) Molecular typing of Leptospira spp. based on putative O-antigen polymerase gene (wzy), the benefit over 16S rRNA gene sequence. FEMS Microbiol Lett 271: 170–179. doi: 10.1111/j.1574-6968.2007.00711.x
[34]
Vinetz JM, Glass GE, Flexner CE, Mueller P, Kaslow DC (1996) Sporadic urban leptospirosis. Ann Intern Med 125: 794–798. doi: 10.7326/0003-4819-125-10-199611150-00002