全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2012 

Morphogenesis and Cell Fate Determination within the Adaxial Cell Equivalence Group of the Zebrafish Myotome

DOI: 10.1371/journal.pgen.1003014

Full-Text   Cite this paper   Add to My Lib

Abstract:

One of the central questions of developmental biology is how cells of equivalent potential—an equivalence group—come to adopt specific cellular fates. In this study we have used a combination of live imaging, single cell lineage analyses, and perturbation of specific signaling pathways to dissect the specification of the adaxial cells of the zebrafish embryo. We show that the adaxial cells are myogenic precursors that form a cell fate equivalence group of approximately 20 cells that consequently give rise to two distinct sub-types of muscle fibers: the superficial slow muscle fibers (SSFs) and muscle pioneer cells (MPs), distinguished by specific gene expression and cell behaviors. Using a combination of live imaging, retrospective and indicative fate mapping, and genetic studies, we show that MP and SSF precursors segregate at the beginning of segmentation and that they arise from distinct regions along the anterior-posterior (AP) and dorsal-ventral (DV) axes of the adaxial cell compartment. FGF signaling restricts MP cell fate in the anterior-most adaxial cells in each somite, while BMP signaling restricts this fate to the middle of the DV axis. Thus our results reveal that the synergistic actions of HH, FGF, and BMP signaling independently create a three-dimensional (3D) signaling milieu that coordinates cell fate within the adaxial cell equivalence group.

References

[1]  Baker NE, Yu SY (1998) The R8-photoreceptor equivalence group in Drosophila: fate choice precedes regulated Delta transcription and is independent of Notch gene dose. Mech Dev 74: 3–14. doi: 10.1016/s0925-4773(98)00054-9
[2]  Huang FZ, Weisblat DA (1996) Cell fate determination in an annelid equivalence group. Development 122: 1839–1847.
[3]  Simpson P, Carteret C (1990) Proneural clusters: equivalence groups in the epithelium of Drosophila. Development 110: 927–932.
[4]  Skeath JB (1999) At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. Bioessays 21: 922–931. doi: 10.1002/(sici)1521-1878(199911)21:11<922::aid-bies4>3.0.co;2-t
[5]  Skeath JB, Thor S (2003) Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 13: 8–15. doi: 10.1016/s0959-4388(03)00007-2
[6]  Wang M, Sternberg PW (2001) Pattern formation during C. elegans vulval induction. Curr Top Dev Biol 51: 189–220. doi: 10.1016/s0070-2153(01)51006-6
[7]  Hirsinger E, Stellabotte F, Devoto SH, Westerfield M (2004) Hedgehog signaling is required for commitment but not initial induction of slow muscle precursors. Dev Biol 275: 143–157. doi: 10.1016/j.ydbio.2004.07.030
[8]  Devoto SH, Melancon E, Eisen JS, Westerfield M (1996) Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122: 3371–3380.
[9]  Daggett DF, Domingo CR, Currie PD, Amacher SL (2007) Control of morphogenetic cell movements in the early zebrafish myotome. Dev Biol 309: 169–179. doi: 10.1016/j.ydbio.2007.06.008
[10]  Felsenfeld AL, Curry M, Kimmel CB (1991) The fub-1 mutation blocks initial myofibril formation in zebrafish muscle pioneer cells. Dev Biol 148: 23–30. doi: 10.1016/0012-1606(91)90314-s
[11]  Roy S, Wolff C, Ingham PW (2001) The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo. Genes Dev 15: 1563–1576. doi: 10.1101/gad.195801
[12]  Ekker M, Wegner J, Akimenko MA, Westerfield M (1992) Coordinate embryonic expression of three zebrafish engrailed genes. Development 116: 1001–1010.
[13]  Hatta K, Bremiller R, Westerfield M, Kimmel CB (1991) Diversity of expression of engrailed-like antigens in zebrafish. Development 112: 821–832.
[14]  Wolff C, Roy S, Ingham PW (2003) Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol 13: 1169–1181. doi: 10.1016/s0960-9822(03)00461-5
[15]  Bryson-Richardson RJ, Currie PD (2008) The genetics of vertebrate myogenesis. Nat Rev Genet 9: 632–646. doi: 10.1038/nrg2369
[16]  Buckingham M (2001) Skeletal muscle formation in vertebrates. Curr Opin Genet Dev 11: 440–448. doi: 10.1016/s0959-437x(00)00215-x
[17]  Barresi MJ, Stickney HL, Devoto SH (2000) The zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity. Development 127: 2189–2199.
[18]  Ingham PW, Kim HR (2005) Hedgehog signalling and the specification of muscle cell identity in the zebrafish embryo. Exp Cell Res 306: 336–342. doi: 10.1016/j.yexcr.2005.03.019
[19]  Lewis KE, Currie PD, Roy S, Schauerte H, Haffter P, et al. (1999) Control of muscle cell-type specification in the zebrafish embryo by Hedgehog signalling. Dev Biol 216: 469–480. doi: 10.1006/dbio.1999.9519
[20]  Currie PD, Ingham PW (1996) Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature 382: 452–455. doi: 10.1038/382452a0
[21]  Du SJ, Devoto SH, Westerfield M, Moon RT (1997) Positive and negative regulation of muscle cell identity by members of the hedgehog and TGF-beta gene families. J Cell Biol 139: 145–156. doi: 10.1083/jcb.139.1.145
[22]  Dolez M, Nicolas JF, Hirsinger E (2011) Laminins, via heparan sulfate proteoglycans, participate in zebrafish myotome morphogenesis by modulating the pattern of Bmp responsiveness. Development 138: 97–106. doi: 10.1242/dev.053975
[23]  Maurya AK, Tan H, Souren M, Wang X, Wittbrodt J, et al. (2011) Integration of Hedgehog and BMP signalling by the engrailed2a gene in the zebrafish myotome. Development 138: 755–765. doi: 10.1242/dev.062521
[24]  Cao Y, Zhao J, Sun Z, Zhao Z, Postlethwait J, et al. (2004) fgf17b, a novel member of Fgf family, helps patterning zebrafish embryos. Dev Biol 271: 130–143. doi: 10.1016/j.ydbio.2004.03.032
[25]  Groves JA, Hammond CL, Hughes SM (2005) Fgf8 drives myogenic progression of a novel lateral fast muscle fibre population in zebrafish. Development 132: 4211–4222. doi: 10.1242/dev.01958
[26]  Hamade A, Deries M, Begemann G, Bally-Cuif L, Genet C, et al. (2006) Retinoic acid activates myogenesis in vivo through Fgf8 signalling. Dev Biol 289: 127–140. doi: 10.1016/j.ydbio.2005.10.019
[27]  Roehl H, Nusslein-Volhard C (2001) Zebrafish pea3 and erm are general targets of FGF8 signaling. Curr Biol 11: 503–507. doi: 10.1016/s0960-9822(01)00143-9
[28]  Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ (2009) FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458: 651–654. doi: 10.1038/nature07753
[29]  Huang P, Schier AF (2009) Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development 136: 3089–3098. doi: 10.1242/dev.041343
[30]  Casci T, Vinos J, Freeman M (1999) Sprouty, an intracellular inhibitor of Ras signaling. Cell 96: 655–665. doi: 10.1016/s0092-8674(00)80576-0
[31]  Furthauer M, Reifers F, Brand M, Thisse B, Thisse C (2001) sprouty4 acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. Development 128: 2175–2186.
[32]  Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA (1998) sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92: 253–263. doi: 10.1016/s0092-8674(00)80919-8
[33]  Reich A, Sapir A, Shilo B (1999) Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126: 4139–4147.
[34]  Bryson-Richardson RJ, Daggett DF, Cortes F, Neyt C, Keenan DG, et al. (2005) Myosin heavy chain expression in zebrafish and slow muscle composition. Dev Dyn 233: 1018–1022. doi: 10.1002/dvdy.20380
[35]  Elworthy S, Hargrave M, Knight R, Mebus K, Ingham PW (2008) Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity. Development 135: 2115–2126. doi: 10.1242/dev.015719
[36]  Labalette C, Bouchoucha YX, Wassef MA, Gongal PA, Le Men J, et al. (2011) Hindbrain patterning requires fine-tuning of early krox20 transcription by Sprouty 4. Development 138: 317–326. doi: 10.1242/dev.057299
[37]  Daly AC, Randall RA, Hill CS (2008) Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol Cell Biol 28: 6889–6902. doi: 10.1128/mcb.01192-08
[38]  Alexander C, Zuniga E, Blitz IL, Wada N, LePabic P, et al. (2011) Combinatorial roles for Bmps and Endothelin1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development 138: 5135–46. doi: 10.1242/dev.067801
[39]  Collery RF, Link BA Dynamic smad-mediated BMP signaling revealed through transgenic zebrafish. Dev Dyn 240: 712–722. doi: 10.1002/dvdy.22567
[40]  Laux DW, Febbo JA, Roman BL (2011) Dynamic analysis of BMP-responsive smad activity in live zebrafish embryos. Dev Dyn 240: 682–694. doi: 10.1002/dvdy.22558
[41]  Hall CJ, Flores MV, Davidson AJ, Crosier KE, Crosier PS (2002) Radar is required for the establishment of vascular integrity in the zebrafish. Dev Biol 251: 105–117. doi: 10.1006/dbio.2002.0794
[42]  Sidi S, Goutel C, Peyrieras N, Rosa FM (2003) Maternal induction of ventral fate by zebrafish radar. Proc Natl Acad Sci U S A 100: 3315–3320. doi: 10.1073/pnas.0530115100
[43]  Kawakami A, Nojima Y, Toyoda A, Takahoko M, Satoh M, et al. (2005) The zebrafish-secreted matrix protein you/scube2 is implicated in long-range regulation of hedgehog signaling. Curr Biol 15: 480–488. doi: 10.1016/j.cub.2005.02.018
[44]  Gosse NJ, Baier H (2009) An essential role for Radar (Gdf6a) in inducing dorsal fate in the zebrafish retina. Proc Natl Acad Sci U S A 106: 2236–2241. doi: 10.1073/pnas.0803202106
[45]  Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, et al. (2008) Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4: 33–41. doi: 10.1038/nchembio.2007.54
[46]  Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75: 1431–1444. doi: 10.1016/0092-8674(93)90628-4
[47]  Schauerte HE, van Eeden FJ, Fricke C, Odenthal J, Strahle U, et al. (1998) Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development 125: 2983–2993.
[48]  Clegg CH, Linkhart TA, Olwin BB, Hauschka SD (1987) Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J Cell Biol 105: 949–956. doi: 10.1083/jcb.105.2.949
[49]  Olwin BB, Hauschka SD (1986) Identification of the fibroblast growth factor receptor of Swiss 3T3 cells and mouse skeletal muscle myoblasts. Biochemistry 25: 3487–3492. doi: 10.1021/bi00360a001
[50]  Seed J, Hauschka SD (1988) Clonal analysis of vertebrate myogenesis. VIII. Fibroblasts growth factor (FGF)-dependent and FGF-independent muscle colony types during chick wing development. Dev Biol 128: 40–49.
[51]  Hammond CL, Hinits Y, Osborn DP, Minchin JE, Tettamanti G, et al. (2007) Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish. Dev Biol 302: 504–521. doi: 10.1016/j.ydbio.2006.10.009
[52]  von Scheven G, Alvares LE, Mootoosamy RC, Dietrich S (2006) Neural tube derived signals and Fgf8 act antagonistically to specify eye versus mandibular arch muscles. Development 133: 2731–2745. doi: 10.1242/dev.02426
[53]  Lagha M, Kormish JD, Rocancourt D, Manceau M, Epstein JA, et al. (2008) Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program. Genes Dev 22: 1828–1837. doi: 10.1101/gad.477908
[54]  Marics I, Padilla F, Guillemot JF, Scaal M, Marcelle C (2002) FGFR4 signaling is a necessary step in limb muscle differentiation. Development 129: 4559–4569.
[55]  Marcelle C, Wolf J, Bronner-Fraser M (1995) The in vivo expression of the FGF receptor FREK mRNA in avian myoblasts suggests a role in muscle growth and differentiation. Dev Biol 172: 100–114. doi: 10.1006/dbio.1995.0008
[56]  Calmont A, Wandzioch E, Tremblay KD, Minowada G, Kaestner KH, et al. (2006) An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells. Dev Cell 11: 339–348. doi: 10.1016/j.devcel.2006.06.015
[57]  Hammond KL, Whitfield TT (2011) Fgf and Hh signalling act on a symmetrical pre-pattern to specify anterior and posterior identity in the zebrafish otic placode and vesicle. Development doi: 10.1242/dev.066639
[58]  Shim K, Minowada G, Coling DE, Martin GR (2005) Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev Cell 8: 553–564. doi: 10.1016/j.devcel.2005.02.009
[59]  Klein OD, Lyons DB, Balooch G, Marshall GW, Basson MA, et al. (2008) An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development 135: 377–385. doi: 10.1242/dev.015081
[60]  Duprez DM, Coltey M, Amthor H, Brickell PM, Tickle C (1996) Bone morphogenetic protein-2 (BMP-2) inhibits muscle development and promotes cartilage formation in chick limb bud cultures. Dev Biol 174: 448–452. doi: 10.1006/dbio.1996.0087
[61]  Pourquie O, Fan CM, Coltey M, Hirsinger E, Watanabe Y, et al. (1996) Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84: 461–471. doi: 10.1016/s0092-8674(00)81291-x
[62]  Patterson SE, Bird NC, Devoto SH (2010) BMP regulation of myogenesis in zebrafish. Dev Dyn 239: 806–817. doi: 10.1002/dvdy.22243
[63]  Daughters RS, Chen Y, Slack JM (2011) Origin of muscle satellite cells in the Xenopus embryo. Development 138: 821–830. doi: 10.1242/dev.056481
[64]  Price SR, Briscoe J (2004) The generation and diversification of spinal motor neurons: signals and responses. Mech Dev 121: 1103–1115. doi: 10.1016/j.mod.2004.04.019
[65]  Hollway GE, Maule J, Gautier P, Evans TM, Keenan DG, et al. (2006) Scube2 mediates Hedgehog signalling in the zebrafish embryo. Dev Biol 294: 104–118. doi: 10.1016/j.ydbio.2006.02.032
[66]  Pyati UJ, Webb AE, Kimelman D (2005) Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development. Development 132: 2333–2343. doi: 10.1242/dev.01806
[67]  Hollway GE, Bryson-Richardson RJ, Berger S, Cole NJ, Hall TE, et al. (2007) Whole-somite rotation generates muscle progenitor cell compartments in the developing zebrafish embryo. Dev Cell 12: 207–219. doi: 10.1016/j.devcel.2007.01.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133