[1] | Eichler EE, Flint J, Gibson G, Kong A, Leal SM, et al. (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11: 446–450. doi: 10.1038/nrg2809
|
[2] | Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009) Finding the missing heritability of complex diseases. Nature 461: 747–753. doi: 10.1038/nature08494
|
[3] | Girirajan S, Campbell CD, Eichler EE (2011) Human copy number variation and complex genetic disease. Annu Rev Genet 45: 203–226. doi: 10.1146/annurev-genet-102209-163544
|
[4] | Girirajan S, Eichler EE (2010) Phenotypic variability and genetic susceptibility to genomic disorders. Hum Mol Genet 19: R176–R187. doi: 10.1093/hmg/ddq366
|
[5] | Gibson G (2011) Rare and common variants: twenty arguments. Nat Rev Genet 13: 135–145. doi: 10.1038/nrg3118
|
[6] | Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A 109: 1193–1198. doi: 10.1073/pnas.1119675109
|
[7] | Gibson G (2009) Decanalization and the origin of complex disease. Nat Rev Genet 10: 134–140. doi: 10.1038/nrg2502
|
[8] | Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417: 618–624. doi: 10.1038/nature749
|
[9] | Rutherford S, Hirate Y, Swalla BJ (2007) The Hsp90 capacitor, developmental remodeling, and evolution: the robustness of gene networks and the curious evolvability of metamorphosis. Crit Rev Biochem Mol Biol 42: 355–372. doi: 10.1080/10409230701597782
|
[10] | Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342. doi: 10.1038/24550
|
[11] | Sangster TA, Lindquist S, Queitsch C (2004) Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 26: 348–362. doi: 10.1002/bies.20020
|
[12] | Sangster TA, Salathia N, Lee HN, Watanabe E, Schellenberg K, et al. (2008) HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105: 2969–2974. doi: 10.1073/pnas.0712210105
|
[13] | Sangster TA, Salathia N, Undurraga S, Milo R, Schellenberg K, et al. (2008) HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proc Natl Acad Sci U S A 105: 2963–2968. doi: 10.1073/pnas.0712200105
|
[14] | Yeyati PL, Bancewicz RM, Maule J, van Heyningen V (2007) Hsp90 selectively modulates phenotype in vertebrate development. PLoS Genet 3: e43 doi:10.1371/journal.pgen.0030043.
|
[15] | Burga A, Casanueva MO, Lehner B (2011) Predicting mutation outcome from early stochastic variation in genetic interaction partners. Nature 480: 250–253. doi: 10.1038/nature10665
|
[16] | Casanueva MO, Burga A, Lehner B (2012) Fitness trade-offs and environmentally induced mutation buffering in isogenic C. elegans. Science 335: 82–85. doi: 10.1126/science.1213491
|
[17] | Bergman A, Siegal ML (2003) Evolutionary capacitance as a general feature of complex gene networks. Nature 424: 549–552. doi: 10.1038/nature01765
|
[18] | Ciliberti S, Martin OC, Wagner A (2007) Innovation and robustness in complex regulatory gene networks. Proc Natl Acad Sci U S A 104: 13591–13596. doi: 10.1073/pnas.0705396104
|
[19] | de Visser JA, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, et al. (2003) Perspective: evolution and detection of genetic robustness. Evolution Int J Org Evolution 57: 1959–1972. doi: 10.1111/j.0014-3820.2003.tb00377.x
|
[20] | Hornstein E, Shomron N (2006) Canalization of development by microRNAs. Nat Genet 38 Suppl: S20–S24. doi: 10.1038/ng1803
|
[21] | Jarosz DF, Taipale M, Lindquist S (2010) Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu Rev Genet 44: 189–216. doi: 10.1146/annurev.genet.40.110405.090412
|
[22] | Leclerc RD (2008) Survival of the sparsest: robust gene networks are parsimonious. Mol Syst Biol 4: 213. doi: 10.1038/msb.2008.52
|
[23] | Lehner B (2008) Selection to minimise noise in living systems and its implications for the evolution of gene expression. Mol Syst Biol 4: 170. doi: 10.1038/msb.2008.11
|
[24] | Levy SF, Siegal ML (2008) Network hubs buffer environmental variation in Saccharomyces cerevisiae. PLoS Biol 6: e264 doi:10.1371/journal.pbio.0060264.
|
[25] | Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137: 273–282. doi: 10.1016/j.cell.2009.01.058
|
[26] | Manu, Surkova S, Spirov AV, Gursky VV, Janssens H, et al. (2009) Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS Comput Biol 5: e1000303 doi:10.1371/journal.pcbi.1000303.
|
[27] | Masel J, Siegal ML (2009) Robustness: mechanisms and consequences. Trends Genet 25: 395–403. doi: 10.1016/j.tig.2009.07.005
|
[28] | Raser JM, O'Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309: 2010–2013. doi: 10.1126/science.1105891
|
[29] | Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat Genet 24: 355–361.
|
[30] | Wagner A (2008) Gene duplications, robustness and evolutionary innovations. Bioessays 30: 367–373. doi: 10.1002/bies.20728
|
[31] | Salathia N, Queitsch C (2007) Molecular mechanisms of canalization: Hsp90 and beyond. J Biosci 32: 457–463. doi: 10.1007/s12038-007-0045-9
|
[32] | Baggs JE, Price TS, DiTacchio L, Panda S, Fitzgerald GA, et al. (2009) Network features of the mammalian circadian clock. PLoS Biol 7: e52 doi:10.1371/journal.pbio.1000052.
|
[33] | Whitacre JM (2012) Biological robustness: paradigms, mechanisms, and systems principles. Frontiers in Genetics 3: 67. doi: 10.3389/fgene.2012.00067
|
[34] | Jarosz DF, Lindquist S (2010) Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 330: 1820–1824. doi: 10.1126/science.1195487
|
[35] | Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38: 896–903. doi: 10.1038/ng1844
|
[36] | Debat V, David P (2001) Mapping phenotypes:canalization, plasticity and developmental stability. TRENDS in Ecology & Evolution 16: 555–561. doi: 10.1016/s0169-5347(01)02266-2
|
[37] | Gangestad SW, Thornhill R, Garver-Apgar CE (2005) Women's sexual interests across the ovulatory cycle depend on primary partner developmental instability. Proc Biol Sci 272: 2023–2027. doi: 10.1098/rspb.2005.3112
|
[38] | Scheib JE, Gangestad SW, Thornhill R (1999) Facial attractiveness, symmetry and cues of good genes. Proc Biol Sci 266: 1913–1917. doi: 10.1098/rspb.1999.0866
|
[39] | Thornhill R, Gangestad SW (1999) Facial attractiveness. Trends Cogn Sci 3: 452–460. doi: 10.1016/s1364-6613(99)01403-5
|
[40] | Gangaraju VK, Yin H, Weiner MM, Wang J, Huang XA, et al. (2011) Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation. Nat Genet 43: 153–158. doi: 10.1038/ng.743
|
[41] | Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, et al. (2003) Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet 33: 70–74. doi: 10.1038/ng1067
|
[42] | Specchia V, Piacentini L, Tritto P, Fanti L, D'Alessandro R, et al. (2010) Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463: 662–665. doi: 10.1038/nature08739
|
[43] | Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11: 515–528. doi: 10.1038/nrm2918
|
[44] | Carey CC, Gorman KF, Rutherford S (2006) Modularity and intrinsic evolvability of Hsp90-buffered change. PLoS ONE 1: e76 doi:10.1371/journal.pone.0000076.
|
[45] | Dote H, Burgan WE, Camphausen K, Tofilon PJ (2006) Inhibition of hsp90 compromises the DNA damage response to radiation. Cancer Res 66: 9211–9220. doi: 10.1158/0008-5472.can-06-2181
|
[46] | Mittelman D, Sykoudis K, Hersh M, Lin Y, Wilson JH (2010) Hsp90 modulates CAG repeat instability in human cells. Cell Stress Chaperones 15: 753–759. doi: 10.1007/s12192-010-0191-0
|
[47] | Chen G, Bradford WD, Seidel CW, Li R (2012) Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482: 246–250. doi: 10.1038/nature10795
|
[48] | Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442: 1046–1049. doi: 10.1038/nature05022
|
[49] | Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification–heritable responses to environmental stress? Curr Opin Plant Biol 14: 260–266. doi: 10.1016/j.pbi.2011.03.003
|
[50] | Ponder RG, Fonville NC, Rosenberg SM (2005) A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell 19: 791–804. doi: 10.1016/j.molcel.2005.07.025
|
[51] | Shee C, Gibson JL, Darrow MC, Gonzalez C, Rosenberg SM (2011) Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. Proc Natl Acad Sci U S A 108: 13659–13664. doi: 10.1073/pnas.1104681108
|
[52] | Cooley MB, Carychao D, Nguyen K, Whitehand L, Mandrell R (2010) Effects of environmental stress on stability of tandem repeats in Escherichia coli O157:H7. Appl Environ Microbiol 76: 3398–3400. doi: 10.1128/aem.02373-09
|
[53] | Dworkin I (2005) A study of canalization and developmental stability in the sternopleural bristle system of Drosophila melanogaster. Evolution; International Journal of Organic Evolution 59: 1500–1509. doi: 10.1554/04-550
|
[54] | Parsons PA (1992) Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity 68(Pt 4): 361–364. doi: 10.1038/hdy.1992.51
|
[55] | Lempe J, Sullivan A, Alexandre C, Skelly DA, Lachowiec J, et al. (submitted) RNA polymerase V as a fast-evolving capacitor in A. thaliana.
|
[56] | Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, et al. (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472: 115–119. doi: 10.1038/nature09861
|
[57] | Hugot JP, Alberti C, Berrebi D, Bingen E, Cezard JP (2003) Crohn's disease: the cold chain hypothesis. Lancet 362: 2012–2015. doi: 10.1016/s0140-6736(03)15024-6
|
[58] | Strachan DP (2000) The role of environmental factors in asthma. Br Med Bull 56: 865–882. doi: 10.1258/0007142001903562
|
[59] | Strachan DP (2000) Family size, infection and atopy: the first decade of the “hygiene hypothesis.”. Thorax 55 Suppl 1: S2–S10. doi: 10.1136/thorax.55.suppl_1.s2
|
[60] | Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109: 594–599. doi: 10.1073/pnas.1116053109
|
[61] | Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, et al. (2008) Evolution of mammals and their gut microbes. Science 320: 1647–1651. doi: 10.1126/science.1155725
|
[62] | Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6: 776–788. doi: 10.1038/nrmicro1978
|
[63] | Malekzadeh F, Alberti C, Nouraei M, Vahedi H, Zaccaria I, et al. (2009) Crohn's disease and early exposure to domestic refrigeration. PLoS ONE 4: e4288 doi:10.1371/journal.pone.0004288.
|
[64] | Prentice AM, Gershwin ME, Schaible UE, Keusch GT, Victora CG, et al. (2008) New challenges in studying nutrition-disease interactions in the developing world. J Clin Invest 118: 1322–1329. doi: 10.1172/jci34034
|
[65] | Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3: 213–223. doi: 10.1016/j.chom.2008.02.015
|
[66] | Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457: 480–484. doi: 10.1038/nature07540
|
[67] | Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, et al. (2002) Recent segmental duplications in the human genome. Science 297: 1003–1007. doi: 10.1126/science.1072047
|
[68] | Girirajan S, Brkanac Z, Coe BP, Baker C, Vives L, et al. (2011) Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLoS Genet 7: e1002334 doi:10.1371/journal.pgen.10b02334.
|
[69] | Girirajan S, Rosenfeld JA, Cooper GM, Antonacci F, Siswara P, et al. (2010) A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet 42: 203–209. doi: 10.1038/ng.534
|
[70] | Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, et al. (2007) Strong association of de novo copy number mutations with autism. Science 316: 445–449. doi: 10.1126/science.1138659
|
[71] | Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, et al. (2006) Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet 38: 1038–1042. doi: 10.1038/ng1862
|
[72] | Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, et al. (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320: 539–543. doi: 10.1126/science.1155174
|
[73] | Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, et al. (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466: 368–372.
|
[74] | Heng HH (2010) Missing heritability and stochastic genome alterations. Nat Rev Genet 11: 813. doi: 10.1038/nrg2809-c3
|
[75] | The Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455: 237–241.
|
[76] | Itsara A, Wu H, Smith JD, Nickerson DA, Romieu I, et al. (2010) De novo rates and selection of large copy number variation. Genome Res 20: 1469–1481. doi: 10.1101/gr.107680.110
|
[77] | Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8: 437–449. doi: 10.1038/nrg2085
|
[78] | Davierwala AP, Haynes J, Li Z, Brost RL, Robinson MD, et al. (2005) The synthetic genetic interaction spectrum of essential genes. Nat Genet 37: 1147–1152. doi: 10.1038/ng1640
|
[79] | Giaever G, Chu AM, Ni L, Connelly C, Riles L, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391. doi: 10.1038/nature00935
|
[80] | Legendre M, Pochet N, Pak T, Verstrepen KJ (2007) Sequence-based estimation of minisatellite and microsatellite repeat variability. Genome Res 17: 1787–1796. doi: 10.1101/gr.6554007
|
[81] | Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18: 85–98. doi: 10.1038/cr.2007.115
|
[82] | Preston BD, Albertson TM, Herr AJ (2010) DNA replication fidelity and cancer. Semin Cancer Biol 20: 281–293. doi: 10.1016/j.semcancer.2010.10.009
|
[83] | Albertini RJ, Nicklas JA, Fuscoe JC, Skopek TR, Branda RF, et al. (1993) In vivo mutations in human blood cells: biomarkers for molecular epidemiology. Environ Health Perspect 99: 135–141. doi: 10.1289/ehp.9399135
|