Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects whose complex multigenic causation has hampered efforts to delineate their molecular basis. The effect of putative modifier genes in determining NTD susceptibility may be investigated in mouse models, particularly those that display partial penetrance such as curly tail, a strain in which NTDs result from a hypomorphic allele of the grainyhead-like-3 gene. Through proteomic analysis, we found that the curly tail genetic background harbours a polymorphic variant of lamin B1, lacking one of a series of nine glutamic acid residues. Lamins are intermediate filament proteins of the nuclear lamina with multiple functions that influence nuclear structure, cell cycle properties, and transcriptional regulation. Fluorescence loss in photobleaching showed that the variant lamin B1 exhibited reduced stability in the nuclear lamina. Genetic analysis demonstrated that the variant also affects neural tube closure: the frequency of spina bifida and anencephaly was reduced three-fold when wild-type lamin B1 was bred into the curly tail strain background. Cultured fibroblasts expressing variant lamin B1 show significantly increased nuclear dysmorphology and diminished proliferative capacity, as well as premature senescence, associated with reduced expression of cyclins and Smc2, and increased expression of p16. The cellular basis of spinal NTDs in curly tail embryos involves a proliferation defect localised to the hindgut epithelium, and S-phase progression was diminished in the hindgut of embryos expressing variant lamin B1. These observations indicate a mechanistic link between altered lamin B1 function, exacerbation of the Grhl3-mediated cell proliferation defect, and enhanced susceptibility to NTDs. We conclude that lamin B1 is a modifier gene of major effect for NTDs resulting from loss of Grhl3 function, a role that is likely mediated via the key function of lamin B1 in maintaining integrity of the nuclear envelope and ensuring normal cell cycle progression.
References
[1]
Nadeau JH (2003) Modifier genes and protective alleles in humans and mice. Curr Opin Genet Dev 13: 290–295. doi: 10.1016/s0959-437x(03)00061-3
[2]
Copp AJ, Greene NDE (2010) Genetics and development of neural tube defects. J Pathol 220: 217–230. doi: 10.1002/path.2643
[3]
Bassuk AG, Kibar Z (2009) Genetic basis of neural tube defects. Semin Pediatr Neurol 16: 101–110. doi: 10.1016/j.spen.2009.06.001
[4]
Greene NDE, Stanier P, Copp AJ (2009) Genetics of human neural tube defects. Hum Mol Genet 18: R113–R129. doi: 10.1093/hmg/ddp347
[5]
Copp AJ, Greene NDE, Murdoch JN (2003) The genetic basis of mammalian neurulation. Nat Rev Genet 4: 784–793. doi: 10.1038/nrg1181
[6]
Harris MJ, Juriloff DM (2010) An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol 88: 653–669. doi: 10.1002/bdra.20676
[7]
Harris MJ, Juriloff DM (2007) Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. Birth Defects Res A Clin Mol Teratol 79: 187–210. doi: 10.1002/bdra.20333
[8]
Van Straaten HWM, Copp AJ (2001) Curly tail: a 50-year history of the mouse spina bifida model. Anat Embryol 203: 225–237. doi: 10.1007/s004290100169
[9]
Gustavsson P, Greene ND, Lad D, Pauws E, de Castro SC, et al. (2007) Increased expression of Grainyhead-like-3 rescues spina bifida in a folate-resistant mouse model. Hum Mol Genet 16: 2640–2646. doi: 10.1093/hmg/ddm221
[10]
Ting SB, Wilanowski T, Auden A, Hall M, Voss AK, et al. (2003) Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3. Nature Med 9: 1513–1519. doi: 10.1038/nm961
[11]
Yu Z, Lin KK, Bhandari A, Spencer JA, Xu X, et al. (2006) The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4. Dev Biol 299: 122–136. doi: 10.1016/j.ydbio.2006.07.015
[12]
Copp AJ, Brook FA, Roberts HJ (1988) A cell-type-specific abnormality of cell proliferation in mutant (curly tail) mouse embryos developing spinal neural tube defects. Development 104: 285–295.
[13]
Gustavsson P, Copp AJ, Greene ND (2008) Grainyhead genes and mammalian neural tube closure. Birth Defects Res A Clin Mol Teratol 82: 728–735. doi: 10.1002/bdra.20494
[14]
Brook FA, Shum ASW, Van Straaten HWM, Copp AJ (1991) Curvature of the caudal region is responsible for failure of neural tube closure in the curly tail (ct) mouse embryo. Development 113: 671–678.
[15]
Chen W-H, Morriss-Kay GM, Copp AJ (1995) Genesis and prevention of spinal neural tube defects in the curly tail mutant mouse: involvement of retinoic acid and its nuclear receptors RAR-beta and RAR-gamma. Development 121: 681–691. doi: 10.1002/aja.1001990203
[16]
Copp AJ, Crolla JA, Brook FA (1988) Prevention of spinal neural tube defects in the mouse embryo by growth retardation during neurulation. Development 104: 297–303.
[17]
Greene NDE, Copp AJ (1997) Inositol prevents folate-resistant neural tube defects in the mouse. Nature Med 3: 60–66. doi: 10.1038/nm0197-60
[18]
Burren KA, Scott JM, Copp AJ, Greene ND (2010) The genetic background of the curly tail strain confers susceptibility to folate-deficiency-induced exencephaly. Birth Defects Res A Clin Mol Teratol 88: 76–83. doi: 10.1002/bdra.20632
[19]
Neumann PE, Frankel WN, Letts VA, Coffin JM, Copp AJ, et al. (1994) Multifactorial inheritance of neural tube defects: Localization of the major gene and recognition of modifiers in ct mutant mice. Nature Genet 6: 357–362. doi: 10.1038/ng0494-357
Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL (2005) The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6: 21–31. doi: 10.1038/nrm1550
[22]
Worman HJ, Fong LG, Muchir A, Young SG (2009) Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest 119: 1825–1836. doi: 10.1172/jci37679
[23]
Hutchison CJ (2002) Lamins: building blocks or regulators of gene expression? Nat Rev Mol Cell Biol 3: 848–858. doi: 10.1038/nrm950
[24]
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, et al. (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22: 832–853. doi: 10.1101/gad.1652708
[25]
Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP (2002) Nuclear lamins: building blocks of nuclear architecture. Genes Dev 16: 533–547. doi: 10.1101/gad.960502
[26]
Malhas A, Lee CF, Sanders R, Saunders NJ, Vaux DJ (2007) Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression. J Cell Biol 176: 593–603. doi: 10.1083/jcb.200607054
[27]
Malhas A, Saunders NJ, Vaux DJ (2010) The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation. Cell Cycle 9: 531–539. doi: 10.4161/cc.9.3.10511
[28]
Mekhail K, Moazed D (2010) The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 11: 317–328. doi: 10.1038/nrm2894
[29]
Kim Y, Sharov AA, McDole K, Cheng M, Hao H, et al. (2011) Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science 334: 1706–1710. doi: 10.1126/science.1211222
[30]
Worman HJ, Ostlund C, Wang Y (2010) Diseases of the nuclear envelope. Cold Spring Harb Perspect Biol 2: a000760. doi: 10.1101/cshperspect.a000760
Schuster J, Sundblom J, Thuresson AC, Hassin-Baer S, Klopstock T, et al. (2011) Genomic duplications mediate overexpression of lamin B1 in adult-onset autosomal dominant leukodystrophy (ADLD) with autonomic symptoms. Neurogenetics 12: 65–72. doi: 10.1007/s10048-010-0269-y
[33]
Vergnes L, Peterfy M, Bergo MO, Young SG, Reue K (2004) Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci U S A 101: 10428–10433. doi: 10.1073/pnas.0401424101
[34]
Coffinier C, Jung HJ, Nobumori C, Chang S, Tu Y, et al. (2011) Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol Biol Cell 22: 4683–4693. doi: 10.1091/mbc.e11-06-0504
[35]
Coffinier C, Chang SY, Nobumori C, Tu Y, Farber EA, et al. (2010) Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc Natl Acad Sci U S A 107: 5076–5081. doi: 10.1073/pnas.0908790107
[36]
Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292: 195–202. doi: 10.1006/jmbi.1999.3091
[37]
Subramanian G, Hjelm RP, Deming TJ, Smith GS, Li Y, Safinya CR (2000) Structure of complexes of cationic lipids and poly(glutamic acid) polypeptides: a pinched lamellar phase. J Am Chem Soc 122: 26–34. doi: 10.1021/ja991905j
[38]
Gruneberg H (1954) Genetical studies on the skeleton of the mouse. VIII. Curly tail. J Genet 52: 52–67. doi: 10.1007/bf02981490
[39]
Beechey CV, Searle AG (1986) Mutations at the Sp locus. Mouse News Letter 75: 28.
[40]
Copp AJ (1985) Relationship between timing of posterior neuropore closure and development of spinal neural tube defects in mutant (curly tail) and normal mouse embryos in culture. J Embryol Exp Morphol 88: 39–54.
[41]
De Castro SC, Leung KY, Savery D, Burren K, Rozen R, et al. (2010) Neural tube defects induced by folate deficiency in mutant curly tail (Grhl3) embryos are associated with alteration in folate one-carbon metabolism but are unlikely to result from diminished methylation. Birth Defects Res A Clin Mol Teratol 88: 612–618. doi: 10.1002/bdra.20690
[42]
Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nature Med 11: 440–445. doi: 10.1038/nm1204
[43]
Budirahardja Y, Gonczy P (2009) Coupling the cell cycle to development. Development 136: 2861–2872. doi: 10.1242/dev.021931
[44]
Hochegger H, Takeda S, Hunt T (2008) Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol 9: 910–916. doi: 10.1038/nrm2510
[45]
Li J, Poi MJ, Tsai MD (2011) Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry 50: 5566–5582. doi: 10.1021/bi200642e
[46]
Legagneux V, Cubizolles F, Watrin E (2004) Multiple roles of Condensins: a complex story. Biol Cell 96: 201–213. doi: 10.1016/j.biolcel.2004.01.003
[47]
Fazzio TG, Panning B (2010) Condensin complexes regulate mitotic progression and interphase chromatin structure in embryonic stem cells. J Cell Biol 188: 491–503. doi: 10.1083/jcb.200908026
[48]
Shimi T, Pfleghaar K, Kojima S, Pack CG, Solovei I, et al. (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22: 3409–3421. doi: 10.1101/gad.1735208
[49]
Tsai MY, Wang S, Heidinger JM, Shumaker DK, Adam SA, et al. (2006) A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311: 1887–1893. doi: 10.1126/science.1122771
[50]
Moir RD, Spann TP, Herrmann H, Goldman RD (2000) Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J Cell Biol 149: 1179–1192. doi: 10.1083/jcb.149.6.1179
[51]
Malhas AN, Lee CF, Vaux DJ (2009) Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol 184: 45–55. doi: 10.1083/jcb.200804155
[52]
Gong D, Pomerening JR, Myers JW, Gustavsson C, Jones JT, et al. (2007) Cyclin A2 regulates nuclear-envelope breakdown and the nuclear accumulation of cyclin B1. Curr Biol 17: 85–91. doi: 10.1016/j.cub.2006.11.066
[53]
Shimi T, Butin-Israeli V, Adam SA, Hamanaka RB, Goldman AE, et al. (2011) The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev 25: 2579–2593. doi: 10.1101/gad.179515.111
[54]
Seller MJ, Perkins KJ (1986) Effect of mitomycin C on the neural tube defects of the curly-tail mouse. Teratology 33: 305–309. doi: 10.1002/tera.1420330308
[55]
Greene ND, Bamidele A, Choy M, de Castro SC, Wait R, et al. (2007) Proteome changes associated with hippocampal MRI abnormalities in the lithium pilocarpine-induced model of convulsive status epilepticus. Proteomics 7: 1336–1344. doi: 10.1002/pmic.200601027
[56]
Greene NDE, Leung KY, Wait R, Begum S, Dunn MJ, et al. (2002) Differential protein expression at the stage of neural tube closure in the mouse embryo. J Biol Chem 277: 41645–41651. doi: 10.1074/jbc.m203607200
[57]
Maske CP, Hollinshead MS, Higbee NC, Bergo MO, Young SG, et al. (2003) A carboxyl-terminal interaction of lamin B1 is dependent on the CAAX endoprotease Rce1 and carboxymethylation. J Cell Biol 162: 1223–1232. doi: 10.1083/jcb.200303113