[1] | Alberts B (2002) Molecular biology of the cell. New York: Garland Science. xxxiv, [1548] p.
|
[2] | Bhattacharyya RP, Remenyi A, Yeh BJ, Lim WA (2006) Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu Rev Biochem 75: 655–680. doi: 10.1146/annurev.biochem.75.103004.142710
|
[3] | Rohs R, Jin X, West SM, Joshi R, Honig B, et al. (2010) Origins of specificity in protein-DNA recognition. Annu Rev Biochem 79: 233–269. doi: 10.1146/annurev-biochem-060408-091030
|
[4] | Lefkowitz RJ (2000) The superfamily of heptahelical receptors. Nat Cell Biol 2: E133–6. doi: 10.1038/35017152
|
[5] | Copley SD (2003) Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol 7: 265–272. doi: 10.1016/s1367-5931(03)00032-2
|
[6] | Gore AC (2007) Endocrine-disrupting chemicals: from basic research to clinical practice. doi: 10.1007/s12020-008-9047-0
|
[7] | Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30: 409–425. doi: 10.1146/annurev.mi.30.100176.002205
|
[8] | O'Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 6: R91–R105. doi: 10.1016/s1074-5521(99)80033-7
|
[9] | Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79: 471–505. doi: 10.1146/annurev-biochem-030409-143718
|
[10] | Tawfik DS (2010) Messy biology and the origins of evolutionary innovations. Nat Chem Biol 6: 692–696.
|
[11] | Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440: 1078–1082. doi: 10.1038/nature04607
|
[12] | Liberles DA, Tisdell MD, Grahnen JA (2011) Binding constraints on the evolution of enzymes and signalling proteins: the important role of negative pleiotropy. Proc Biol Sci 278: 1930–1935. doi: 10.1098/rspb.2010.2637
|
[13] | Bershtein S, Goldin K, Tawfik DS (2008) Intense neutral drifts yield robust and evolvable consensus proteins. Journal of molecular biology 379: 1029–1044. doi: 10.1016/j.jmb.2008.04.024
|
[14] | Bloom JD, Romero PA, Lu Z, Arnold FH (2007) Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution. Biol Direct 2: 17. doi: 10.1186/1745-6150-2-17
|
[15] | Bloom JD, Arnold FH (2009) In the light of directed evolution: pathways of adaptive protein evolution. Proc Natl Acad Sci U S A 106 Suppl 1: 9995–10000. doi: 10.1073/pnas.0901522106
|
[16] | Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, et al. (2009) Predicting new molecular targets for known drugs. Nature 462: 175–181. doi: 10.1038/nature08506
|
[17] | Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3: 950–964. doi: 10.1038/nrd1551
|
[18] | Eick GN, Thornton JW (2011) Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Mol Cell Endocrinol 334: 31–38. doi: 10.1016/j.mce.2010.09.003
|
[19] | Katzenellenbogen JA (1995) The structural pervasiveness of estrogenic activity. Environ Health Perspect 103 Suppl 7: 99–101. doi: 10.1289/ehp.95103s799
|
[20] | Orchinik M, Propper CR (2006) Hormone Action on Receptors. In: Norris DO, Carr JA, editors. Endocrine Disruption: Biological Basis for Health Effects in Wildlife and Humans. New York: Oxford University Press. pp. 28–57.
|
[21] | Thornton JW (2004) Resurrecting ancient genes: experimental analysis of extinct molecules. Nat Rev Genet 5: 366–375. doi: 10.1038/nrg1324
|
[22] | Liberles DA (2008) Ancestral Sequence Reconstruction. doi: 10.1093/acprof:oso/9780199299188.001.0001
|
[23] | Thornton JW, Need E, Crews D (2003) Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301: 1714–1717. doi: 10.1126/science.1086185
|
[24] | Bridgham JT, Brown JE, Rodriguez-Mari A, Catchen JM, Thornton JW (2008) Evolution of a new function by degenerative mutation in cephalochordate steroid receptors. PLoS Genet 4: e1000191. doi: 10.1371/journal.pgen.1000191
|
[25] | Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, et al. (2000) Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289: 119–123. doi: 10.1126/science.289.5476.119
|
[26] | Veldscholte J, Berrevoets CA, Ris-Stalpers C, Kuiper GG, Jenster G, et al. (1992) The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J Steroid Biochem Mol Biol 41: 665–669. doi: 10.1016/0960-0760(92)90401-4
|
[27] | Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, et al. (2000) Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 6: 703–706.
|
[28] | Thornton JW (2001) Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc Natl Acad Sci U S A 98: 5671–5676. doi: 10.1073/pnas.091553298
|
[29] | Dubois D, Prade H (1987) The principle of mimimum specificity as a basis for evidentiary reasoning. Lecture Notes in Computer Science 286: 75–84. doi: 10.1007/3-540-18579-8_6
|
[30] | Mizuta T, Asahina K, Suzuki M, Kubokawa K (2008) In vitro conversion of sex steroids and expression of sex steroidogenic enzyme genes in amphioxus ovary. J Exp Zool A Ecol Genet Physiol 309: 83–93. doi: 10.1002/jez.438
|
[31] | D'Aniello A, Di Cosmo A, Di Cristo C, Assisi L, Botte V, et al. (1996) Occurrence of sex steroid hormones and their binding proteins in Octopus vulgaris lam. Biochem Biophys Res Commun 227: 782–788. doi: 10.1006/bbrc.1996.1585
|
[32] | Close DA, Yun SS, McCormick SD, Wildbill AJ, Li W (2010) 11-deoxycortisol is a corticosteroid hormone in the lamprey. Proc Natl Acad Sci U S A 107: 13942–13947. doi: 10.1073/pnas.0914026107
|
[33] | Taverna DM, Goldstein RA (2002) Why are proteins so robust to site mutations? 1. Journal of molecular biology 315: 479–484. doi: 10.1006/jmbi.2001.5226
|
[34] | Ryan MJ, Fox JH, Wilczynski W, Rand AS (1990) Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature 343: 66–67. doi: 10.1038/343066a0
|
[35] | Wickler W (1968) Mimicry in Plants and Animals. New York: McGraw-Hill.
|
[36] | Edwards DP, Wu DW (2007) The roles of sensory traps in the origin, maintenance and breakdown of mutualism. Behav Ecol Sociobiol 61: 1321–1327. doi: 10.1007/s00265-007-0369-3
|
[37] | Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797. doi: 10.1093/nar/gkh340
|
[38] | Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
|
[39] | Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Systematic biology 55: 539–552.
|
[40] | Yang Z, Kumar S, Nei M (1995) A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141: 1641–1650.
|
[41] | Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13: 555–556. doi: 10.1093/bioinformatics/13.5.555
|
[42] | Hanson-Smith V, Kolaczkowski B, Thornton JW (2010) Robustness of ancestral sequence reconstruction to phylogenetic uncertainty. Mol Biol Evol 27: 1988–1999. doi: 10.1093/molbev/msq081
|
[43] | Picard D, Yamamoto KR (1987) Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 6: 3333–3340.
|
[44] | Keay J, Bridgham JT, Thornton JW (2006) The Octopus vulgaris estrogen receptor is a constitutive transcriptional activator: evolutionary and functional implications. Endocrinology 147: 3861–3869. doi: 10.1210/en.2006-0363
|
[45] | Bridgham JT, Carroll SM, Thornton JW (2006) Evolution of hormone-receptor complexity by molecular exploitation. Science 312: 97–101. doi: 10.1126/science.1123348
|
[46] | Clinckemalie L, Vanderschueren D, Boonen… S (2012) The hinge region in androgen receptor control. Molecular and cellular … doi: 10.1016/j.mce.2012.02.019
|
[47] | Bridgham JT, Eick GN, Larroux C, Deshpande K, Harms MJ, et al. (2010) Protein evolution by molecular tinkering: diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS Biol 8 doi: 10.1371/journal.pbio.1000497
|
[48] | Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–221. doi: 10.1107/s0907444909052925
|
[49] | Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132. doi: 10.1107/s0907444904019158
|
[50] | Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426: 145–159. doi: 10.1007/978-1-60327-058-8_8
|
[51] | Lovell SC, Davis IW, Arendall WBr, de Bakker PI, Word JM, et al. (2003) Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50: 437–450. doi: 10.1002/prot.10286
|
[52] | Kleywegt GJ, Jones TA (1994) Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr 50: 178–185. doi: 10.1107/s0907444993011333
|