全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Differential Gene Expression Changes in Children with Severe Dengue Virus Infections

DOI: 10.1371/journal.pntd.0000215

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The host response to dengue virus infection is characterized by the production of numerous cytokines, but the overall picture appears to be complex. It has been suggested that a balance may be involved between protective and pathologic immune responses. This study aimed to define differential immune responses in association with clinical outcomes by gene expression profiling of a selected panel of inflammatory genes in whole blood samples from children with severe dengue infections. Methodology/Principal Findings Whole blood mRNA from 56 Indonesian children with severe dengue virus infections was analyzed during early admission and at day ?1, 0, 1, and 5–8 after defervescence. Levels were related to baseline levels collected at a 1-month follow-up visit. Processing of mRNA was performed in a single reaction by multiplex ligation-dependent probe amplification, measuring mRNA levels from genes encoding 36 inflammatory proteins and 14 Toll-like receptor (TLR)-associated molecules. The inflammatory gene profiles showed up-regulation during infection of eight genes, including IFNG and IL12A, which indicated an antiviral response. On the contrary, genes associated with the nuclear factor (NF)-κB pathway were down-regulated, including NFKB1, NFKB2, TNFR1, IL1B, IL8, and TNFA. Many of these NF-κB pathway–related genes, but not IFNG or IL12A, correlated with adverse clinical events such as development of pleural effusion and hemorrhagic manifestations. The TLR profile showed that TLRs were differentially activated during severe dengue infections: increased expression of TLR7 and TLR4R3 was found together with a decreased expression of TLR1, TLR2, TLR4R4, and TLR4 co-factor CD14. Conclusions/Significance These data show that different immunological pathways are differently expressed and associated with different clinical outcomes in children with severe dengue infections.

References

[1]  World Health Organization (1997) Dengue Haemorrhagic Fever: Diagnosis, treatment, prevention and control. World Health Organization.
[2]  Rothman AL (2004) Dengue: defining protective versus pathologic immunity. J Clin Invest 113: 946–951. doi: 10.1172/JCI21512
[3]  Clyde K, Kyle JL, Harris E (2006) Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 80: 11418–11431. doi: 10.1128/JVI.01257-06
[4]  Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10: S98–109. doi: 10.1038/nm1144
[5]  Mairuhu AT, Wagenaar J, Brandjes DP, van Gorp EC (2004) Dengue: an arthropod-borne disease of global importance. Eur J Clin Microbiol Infect Dis 23: 425–433. doi: 10.1007/s10096-004-1145-1
[6]  Halstead SB, Nimmannitya S, Cohen SN (1970) Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med 42: 311–328.
[7]  Halstead SB, Rojanasuphot S, Sangkawibha N (1983) Original antigenic sin in dengue. Am J Trop Med Hyg 32: 154–156.
[8]  Guzman MG, Kouri GP, Bravo J, Soler M, Vazquez S, et al. (1990) Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study. Am J Trop Med Hyg 42: 179–184.
[9]  Navarro-Sanchez E, Despres P, Cedillo-Barron L (2005) Innate immune responses to dengue virus. Arch Med Res 36: 425–435. doi: 10.1016/j.arcmed.2005.04.007
[10]  Green S, Rothman A (2006) Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Curr Opin Infect Dis 19: 429–436. doi: 10.1097/01.qco.0000244047.31135.fa
[11]  Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, et al. (2004) Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78: 2701–2710. doi: 10.1128/JVI.78.6.2701-2710.2004
[12]  Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, et al. (1997) Dengue in the early febrile phase: viremia and antibody responses. J Infect Dis 176: 322–330. doi: 10.1086/514048
[13]  Vaidya SA, Cheng G (2003) Toll-like receptors and innate antiviral responses. Curr Opin Immunol 15: 402–407. doi: 10.1016/S0952-7915(03)00070-0
[14]  Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: 1529–1531. doi: 10.1126/science.1093616
[15]  Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, et al. (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 101: 3516–3521. doi: 10.1073/pnas.0400525101
[16]  Eldering E, Spek CA, Aberson HL, Grummels A, Derks IA, et al. (2003) Expression profiling via novel multiplex assay allows rapid assessment of gene regulation in defined signalling pathways. Nucleic Acids Res 31: e153. doi: 10.1093/nar/gng153
[17]  Spek CA, Verbon A, Aberson H, Pribble JP, McElgunn CJ, et al. (2003) Treatment with an anti-CD14 monoclonal antibody delays and inhibits lipopolysaccharide-induced gene expression in humans in vivo. J Clin Immunol 23: 132–140. doi: 10.1023/A:1022528912387
[18]  Maris NA, de Vos AF, Dessing MC, Spek CA, Lutter R, et al. (2005) Antiinflammatory effects of salmeterol after inhalation of lipopolysaccharide by healthy volunteers. Am J Respir Crit Care Med 172: 878–884. doi: 10.1164/rccm.200503-451OC
[19]  Wettinger SB, Doggen CJ, Spek CA, Rosendaal FR, Reitsma PH (2005) High throughput mRNA profiling highlights associations between myocardial infarction and aberrant expression of inflammatory molecules in blood cells. Blood 105: 2000–2006. doi: 10.1182/blood-2004-08-3283
[20]  Maris NA, Dessing MC, de Vos AF, Bresser P, van der Zee JS, et al. (2006) Toll-like receptor mRNA levels in alveolar macrophages after inhalation of endotoxin. Eur Respir J 28: 622–626. doi: 10.1183/09031936.06.00010806
[21]  Mairuhu A, Setiati T, Koraka P, Hack C, Leyte A, et al. (2005) Increased PAI-1 plasma levels and risk of death from dengue: no association with the 4G/5G promoter polymorphism. Thromb J 3: 17. doi: 10.1186/1477-9560-3-17
[22]  Groen J, Koraka P, Velzing J, Copra C, Osterhaus AD (2000) Evaluation of six immunoassays for detection of dengue virus-specific immunoglobulin M and G antibodies. Clin Diagn Lab Immunol 7: 867–871. doi: 10.1128/cdli.7.6.867-871.2000
[23]  Koraka P, Burghoorn-Maas CP, Falconar A, Setiati TE, Djamiatun K, et al. (2003) Detection of immune-complex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections. J Clin Microbiol 41: 4154–4159. doi: 10.1128/JCM.41.9.4154-4159.2003
[24]  Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57: 289–300.
[25]  Cooper AM, Kipnis A, Turner J, Magram J, Ferrante J, et al. (2002) Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J Immunol 168: 1322–1327.
[26]  Hayden MS, West AP, Ghosh S (2006) NF-kappaB and the immune response. Oncogene 25: 6758–6780. doi: 10.1038/sj.onc.1209943
[27]  Green S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Suntayakorn S, et al. (1999) Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. J Infect Dis 179: 755–762. doi: 10.1086/314680
[28]  Nguyen TH, Lei HY, Nguyen TL, Lin YS, Huang KJ, et al. (2004) Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. J Infect Dis 189: 221–232. doi: 10.1086/380762
[29]  Azeredo EL, Zagne SM, Santiago MA, Gouvea AS, Santana AA, et al. (2001) Characterisation of lymphocyte response and cytokine patterns in patients with dengue fever. Immunobiology 204: 494–507. doi: 10.1078/0171-2985-00058
[30]  Gagnon SJ, Mori M, Kurane I, Green S, Vaughn DW, et al. (2002) Cytokine gene expression and protein production in peripheral blood mononuclear cells of children with acute dengue virus infections. J Med Virol 67: 41–46. doi: 10.1002/jmv.2190
[31]  Suharti C, van Gorp EC, Dolmans WM, Setiati TE, Hack CE, et al. (2003) Cytokine patterns during dengue shock syndrome. Eur Cytokine Netw 14: 172–177.
[32]  Marianneau P, Cardona A, Edelman L, Deubel V, Despres P (1997) Dengue virus replication in human hepatoma cells activates NF-kappaB which in turn induces apoptotic cell death. J Virol 71: 3244–3249.
[33]  Avirutnan P, Malasit P, Seliger B, Bhakdi S, Husmann M (1998) Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J Immunol 161: 6338–6346.
[34]  Libraty DH, Endy TP, Houng HS, Green S, Kalayanarooj S, et al. (2002) Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J Infect Dis 185: 1213–1221. doi: 10.1086/340365
[35]  Moreno-Altamirano MM, Romano M, Legorreta-Herrera M, Sanchez-Garcia FJ, Colston MJ (2004) Gene expression in human macrophages infected with dengue virus serotype-2. Scand J Immunol 60: 631–638. doi: 10.1111/j.0300-9475.2004.01519.x
[36]  Chen LC, Lei HY, Liu CC, Shiesh SC, Chen SH, et al. (2006) Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. Am J Trop Med Hyg 74: 142–147.
[37]  Kurane I, Innis BL, Nimmannitya S, Nisalak A, Meager A, et al. (1991) Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. J Clin Invest 88: 1473–1480. doi: 10.1172/JCI115457
[38]  Braga EL, Moura P, Pinto LM, Ignacio SR, Oliveira MJ, et al. (2001) Detection of circulant tumor necrosis factor-alpha, soluble tumor necrosis factor p75 and interferon-gamma in Brazilian patients with dengue fever and dengue hemorrhagic fever. Mem Inst Oswaldo Cruz 96: 229–232. doi: 10.1590/S0074-02762001000200015
[39]  Mustafa AS, Elbishbishi EA, Agarwal R, Chaturvedi UC (2001) Elevated levels of interleukin-13 and IL-18 in patients with dengue hemorrhagic fever. FEMS Immunol Med Microbiol 30: 229–233. doi: 10.1111/j.1574-695X.2001.tb01575.x
[40]  Agarwal R, Elbishbishi EA, Chaturvedi UC, Nagar R, Mustafa AS (1999) Profile of transforming growth factor-beta 1 in patients with dengue haemorrhagic fever. Int J Exp Pathol 80: 143–149. doi: 10.1046/j.1365-2613.1999.00107.x
[41]  Simmons CP, Popper S, Dolocek C, Chau TN, Griffiths M, et al. (2007) Patterns of host genome–wide gene transcript abundance in the peripheral blood of patients with acute dengue hemorrhagic fever. J Infect Dis 195: 1097–1107. doi: 10.1086/512162
[42]  Atrasheuskaya A, Petzelbauer P, Fredeking TM, Ignatyev G (2003) Anti-TNF antibody treatment reduces mortality in experimental dengue virus infection. FEMS Immunol Med Microbiol 35: 33–42. doi: 10.1111/j.1574-695X.2003.tb00646.x
[43]  Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E (2006) Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol 80: 10208–10217. doi: 10.1128/JVI.00062-06
[44]  Cardier JE, Marino E, Romano E, Taylor P, Liprandi F, et al. (2005) Proinflammatory factors present in sera from patients with acute dengue infection induce activation and apoptosis of human microvascular endothelial cells: possible role of TNF-alpha in endothelial cell damage in dengue. Cytokine 30: 359–365. doi: 10.1016/j.cyto.2005.01.021
[45]  Trinchieri G, Sher A (2007) Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7: 179–190. doi: 10.1038/nri2038
[46]  Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, et al. (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A 101: 5598–5603. doi: 10.1073/pnas.0400937101
[47]  Wang JP, Liu P, Latz E, Golenbock DT, Finberg RW, et al. (2006) Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177: 7114–7121.
[48]  Peipert JF, Phipps MG (1998) Observational studies. Clin Obstet Gynecol 41: 235–244. doi: 10.1097/00003081-199806000-00004
[49]  Deen JL, Harris E, Wills B, Balmaseda A, Hammond SN, et al. (2006) The WHO dengue classification and case definitions: time for a reassessment. Lancet 368: 170–173. doi: 10.1016/S0140-6736(06)69006-5
[50]  Setiati TE, Mairuhu AT, Koraka P, Supriatna M, Mac Gillavry MR, et al. (2007) Dengue disease severity in Indonesian children: an evaluation of the World Health Organization classification system. BMC Infect Dis 7: 22. doi: 10.1186/1471-2334-7-22

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133