[1] | Davis LE, Kornfeld M (1991) Neurocysticercosis: neurologic, pathogenic, diagnostic and therapeutic aspects. Eur Neurol 31: 229–240. doi: 10.1159/000116683
|
[2] | White AC Jr. (2000) Neurocysticercosis: updates on epidemiology, pathogenesis, diagnosis, and management. Annu Rev Med 51: 187–206. doi: 10.1146/annurev.med.51.1.187
|
[3] | White AC Jr., Robinson P, Kuhn R (1997) Taenia solium cysticercosis: host-parasite interactions and the immune response. Chem Immunol 66: 209–230. doi: 10.1159/000058663
|
[4] | Itabashi HH (1983) Pathology of CNS cysticercosis. Bull Clin Neurosci 48: 6–17.
|
[5] | Alvarez JI, Colegial CH, Castano CA, Trujillo J, Teale JM, et al. (2002) The human nervous tissue in proximity to granulomatous lesions induced by Taenia solium metacestodes displays an active response. J Neuroimmunol 127: 139–144. doi: 10.1016/S0165-5728(02)00101-7
|
[6] | Alvarez JI, Londono DP, Alvarez AL, Trujillo J, Jaramillo MM, et al. (2002) Granuloma formation and parasite disintegration in porcine cysticercosis: comparison with human neurocysticercosis. J Comp Pathol 127: 186–193. doi: 10.1053/jcpa.2002.0579
|
[7] | Alvarez JI, Teale JM (2006) Breakdown of the blood brain barrier and blood-cerebrospinal fluid barrier is associated with differential leukocyte migration in distinct compartments of the CNS during the course of murine NCC. J Neuroimmunol 173: 45–55. doi: 10.1016/j.jneuroim.2005.11.020
|
[8] | Cardona AE, Gonzalez PA, Teale JM (2003) CC chemokines mediate leukocyte trafficking into the central nervous system during murine neurocysticercosis: role of gamma delta T cells in amplification of the host immune response. Infect Immun 71: 2634–2642. doi: 10.1128/IAI.71.5.2634-2642.2003
|
[9] | Cardona AE, Restrepo BI, Jaramillo JM, Teale JM (1999) Development of an animal model for neurocysticercosis: immune response in the central nervous system is characterized by a predominance of gamma delta T cells. J Immunol 162: 995–1002.
|
[10] | Londono DP, Alvarez JI, Trujillo J, Jaramillo MM, Restrepo BI (2002) The inflammatory cell infiltrates in porcine cysticercosis: immunohistochemical analysis during various stages of infection. Vet Parasitol 109: 249–259. doi: 10.1016/S0304-4017(02)00290-X
|
[11] | Restrepo BI, Alvarez JI, Castano JA, Arias LF, Restrepo M, et al. (2001) Brain granulomas in neurocysticercosis patients are associated with a Th1 and Th2 profile. Infect Immun 69: 4554–4560. doi: 10.1128/IAI.69.7.4554-4560.2001
|
[12] | Flisser A, Gauci CG, Zoli A, Martinez-Ocana J, Garza-Rodriguez A, et al. (2004) Induction of protection against porcine cysticercosis by vaccination with recombinant oncosphere antigens. Infect Immun 72: 5292–5297. doi: 10.1128/IAI.72.9.5292-5297.2004
|
[13] | Rodriguez-Canul R, Allan JC, Fletes C, Sutisna IP, Kapti IN, et al. (1997) Comparative evaluation of purified Taenia solium glycoproteins and crude metacestode extracts by immunoblotting for the serodiagnosis of human T. solium cysticercosis. Clin Diagn Lab Immunol 4: 579–582.
|
[14] | Tsang VC, Brand JA, Boyer AE (1989) An enzyme-linked immunoelectrotransfer blot assay and glycoprotein antigens for diagnosing human cysticercosis (Taenia solium). J Infect Dis 159: 50–59. doi: 10.1093/infdis/159.1.50
|
[15] | Baig S, Damian RT, Morales-Montor J, Ghaleb A, Baghdadi A, et al. (2006) Protection from murine cysticercosis by immunization with a parasite cysteine protease. Microbes Infect 8: 2733–2735. doi: 10.1016/j.micinf.2006.08.002
|
[16] | Restrepo BI, Obregon-Henao A, Mesa M, Gil DL, Ortiz BL, et al. (2000) Characterisation of the carbohydrate components of Taenia solium metacestode glycoprotein antigens. Int J Parasitol 30: 689–696. doi: 10.1016/S0020-7519(00)00057-6
|
[17] | Cai X, Yuan G, Zheng Y, Luo X, Zhang S, et al. (2007) Effective production and purification of the glycosylated TSOL18 antigen protective against pig cysticercosis. Infect Immun.. doi: 10.1128/iai.00444-07
|
[18] | Sciutto E, Rosas G, Hernandez M, Morales J, Cruz-Revilla C, et al. (2007) Improvement of the synthetic tri-peptide vaccine (S3Pvac) against porcine Taenia solium cysticercosis in search of a more effective, inexpensive and manageable vaccine. Vaccine 25: 1368–1378. doi: 10.1016/j.vaccine.2006.10.018
|
[19] | Haslam SM, Restrepo BI, Obregon-Henao A, Teale JM, Morris HR, et al. (2003) Structural characterization of the N-linked glycans from Taenia solium metacestodes. Mol Biochem Parasitol 126: 103–107. doi: 10.1016/S0166-6851(02)00250-5
|
[20] | McLaren DJ, Hockley DJ (1977) Blood flukes have a double outer membrane. Nature 269: 147–149. doi: 10.1038/269147a0
|
[21] | Smyth JD, McManus DP (1989) The physiology and biochemistry of cestodes. Cambridge: Cambrindge University Press.
|
[22] | Hess E (1980) Ultrastructural study of the tetrathyridium of Mesocestoides corti Hoeppli, 1925: tegument and parenchyma. Z Parasitenkd 61: 135–159. doi: 10.1007/BF00925460
|
[23] | MacGregor AN, Kusel JR, Wilson RA (1988) Isolation and characterisation of discoid granules from the tegument of adult Schistosoma mansoni. Parasitol Res 74: 250–254. doi: 10.1007/BF00539573
|
[24] | Dell A, Haslam SM, Morris HR, Khoo KH (1999) Immunogenic glycoconjugates implicated in parasitic nematode diseases. Biochimica Et Biophysica Acta 1455: 353–362. doi: 10.1016/S0925-4439(99)00064-2
|
[25] | de Aluja AS, Martinez MJ, Villalobos AN (1998) Taenia solium cysticercosis in young pigs: age at first infection and histological characteristics. Vet Parasitol 76: 71–79. doi: 10.1016/S0304-4017(97)00059-9
|
[26] | Obregon-Henao A, Gil DL, Gomez DI, Sanzon F, Teale JM, et al. (2001) The role of N-linked carbohydrates in the antigenicity of Taenia solium metacestode glycoproteins of 12, 16 and 18 kD. Mol Biochem Parasitol 114: 209–215. doi: 10.1016/S0166-6851(01)00256-0
|
[27] | Obregon-Henao A, Londono DP, Gomez DI, Trujillo J, Teale JM, et al. (2003) In situ detection of antigenic glycoproteins in Taenia solium metacestodes. J Parasitol 89: 726–732. doi: 10.1645/GE-3046
|
[28] | Estes DM, Teale JM (1991) Biochemical and functional analysis of extracellular stress proteins of Mesocestoides corti. J Immunol 147: 3926–3934.
|
[29] | Jacobson RL, Doyle RJ (1996) Lectin-parasite interactions. Parasitol Today 12: 55–61. doi: 10.1016/0169-4758(96)80655-7
|
[30] | Roberts MC, Modha J (1997) Probing the nematode surface. Parasitol Today 13: 52–56. doi: 10.1016/S0169-4758(96)10082-X
|
[31] | Furtula VW, Nothnagel RM, A. E (1987) Direct Covalent Linkage of Fluorescent Probes to the Plant Protoplast Surface. Protoplasma 117. doi: 10.1007/bf01282282
|
[32] | Halton DW (2004) Microscopy and the helminth parasite. Micron 35: 361–390. doi: 10.1016/j.micron.2003.12.001
|
[33] | Georgieva KM-B, A. Y (1999) Surface Carbohydrates in Helminths. Experimental pathology and parasitology 3: 32–37.
|
[34] | Blaxter ML, Page AP, Rudin W, Maizels RM (1992) Nematode surface coats: actively evading immunity. Parasitol Today 8: 243–247. doi: 10.1016/0169-4758(92)90126-M
|
[35] | Maizels RM, Bundy DA, Selkirk ME, Smith DF, Anderson RM (1993) Immunological modulation and evasion by helminth parasites in human populations. Nature 365: 797–805. doi: 10.1038/365797a0
|
[36] | Gonzalez-Fernandez M, Carrasco-Marin E, Alvarez-Dominguez C, Outschoorn IM, Leyva-Cobian F (1997) Inhibitory effects of thymus-independent type 2 antigens on MHC class II-restricted antigen presentation: comparative analysis of carbohydrate structures and the antigen presenting cell. Cell Immunol 176: 1–13. doi: 10.1006/cimm.1996.1078
|
[37] | Jankovic D, Sher A, Yap G (2001) Th1/Th2 effector choice in parasitic infection: decision making by committee. Curr Opin Immunol 13: 403–409. doi: 10.1016/S0952-7915(00)00234-X
|
[38] | Chavarria A, Fleury A, Bobes RJ, Morales J, Fragoso G, et al. (2006) A depressed peripheral cellular immune response is related to symptomatic neurocysticercosis. Microbes Infect 8: 1082–1089. doi: 10.1016/j.micinf.2005.11.005
|
[39] | Medina-Escutia E, Morales-Lopez Z, Proano JV, Vazquez J, Bermudez V, et al. (2001) Cellular immune response and Th1/Th2 cytokines in human neurocysticercosis: lack of immune suppression. J Parasitol 87: 587–590. doi: 10.1645/0022-3395(2001)087[0587:CIRATT]2.0.CO;2
|
[40] | Restrepo BI, Aguilar MI, Melby PC, Teale JM (2001) Analysis of the peripheral immune response in patients with neurocysticercosis: evidence for T cell reactivity to parasite glycoprotein and vesicular fluid antigens. Am J Trop Med Hyg 65: 366–370.
|
[41] | Lightowlers MW, Rickard MD (1988) Excretory-secretory products of helminth parasites: effects on host immune responses. Parasitology 96: SupplS123–166. doi: 10.1017/S0031182000086017
|
[42] | Maizels RM, Yazdanbakhsh M (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 3: 733–744. doi: 10.1038/nri1183
|
[43] | Riffkin M, Seow HF, Jackson D, Brown L, Wood P (1996) Defence against the immune barrage: helminth survival strategies. Immunol Cell Biol 74: 564–574. doi: 10.1038/icb.1996.90
|
[44] | Arechavaleta F, Molinari JL, Tato P (1998) A Taenia solium metacestode factor nonspecifically inhibits cytokine production. Parasitol Res 84: 117–122. doi: 10.1007/s004360050367
|
[45] | Ernani FP, Teale JM (1993) Release of stress proteins from Mesocestoides corti is a brefeldin A-inhibitable process: evidence for active export of stress proteins. Infect Immun 61: 2596–2601.
|
[46] | Gomez-Garcia L, Rivera-Montoya I, Rodriguez-Sosa M, Terrazas LI (2006) Carbohydrate components of Taenia crassiceps metacestodes display Th2-adjuvant and anti-inflammatory properties when co-injected with bystander antigen. Parasitol Res 99: 440–448. doi: 10.1007/s00436-006-0159-2
|
[47] | Taylor MD, LeGoff L, Harris A, Malone E, Allen JE, et al. (2005) Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J Immunol 174: 4924–4933.
|