Parasites of the Leishmania genus can rapidly alter several macrophage (M?) signalling pathways in order to tame down the innate immune response and inflammation, therefore favouring their survival and propagation within their mammalian host. Having recently reported that Leishmania and bacterial LPS generate a significantly stronger inflammatory response in animals and phagocytes functionally deficient for the Src homology 2 domain-containing protein tyrosine phosphatase (SHP-1), we hypothesized that Leishmania could exploit SHP-1 to inactivate key kinases involved in Toll-like receptor (TLR) signalling and innate immunity such as IL-1 receptor-associated kinase 1 (IRAK-1). Here we show that upon infection, SHP-1 rapidly binds to IRAK-1, completely inactivating its intrinsic kinase activity and any further LPS-mediated activation as well as M? functions. We also demonstrate that the SHP-1/IRAK-1 interaction occurs via an evolutionarily conserved ITIM-like motif found in the kinase domain of IRAK-1, which we named KTIM (Kinase Tyrosyl-based Inhibitory Motif). This regulatory motif appeared in early vertebrates and is not found in any other IRAK family member. Our study additionally reveals that several other kinases (e.g. Erk1/2, IKKα/β) involved in downstream TLR signalling also bear KTIMs in their kinase domains and interact with SHP-1. We thus provide the first demonstration that a pathogen can exploit a host protein tyrosine phosphatase, namely SHP-1, to directly inactivate IRAK-1 through a generally conserved KTIM motif.
References
[1]
Takeda K, Akira S (2001) Roles of Toll-like receptors in innate immune responses. Genes Cells 6: 733–742. doi: 10.1046/j.1365-2443.2001.00458.x
[2]
Olivier M, Gregory DJ, Forget G (2005) Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 18: 293–305. doi: 10.1128/CMR.18.2.293-305.2005
[3]
Forget G, Matte C, Siminovitch KA, Rivest S, Pouliot P, et al. (2005) Regulation of the Leishmania-induced innate inflammatory response by the protein tyrosine phosphatase SHP-1. Eur J Immunol 35: 1906–1917. doi: 10.1002/eji.200526037
[4]
Cameron P, McGachy A, Anderson M, Paul A, Coombs GH, et al. (2004) Inhibition of lipopolysaccharide-induced macrophage IL-12 production by Leishmania mexicana amastigotes: the role of cysteine peptidases and the NF-kappaB signaling pathway. J Immunol 173: 3297–3304.
[5]
Carrera L, Gazzinelli RT, Badolato R, Hieny S, Muller W, et al. (1996) Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J Exp Med 183: 515–526. doi: 10.1084/jem.183.2.515
[6]
Lang T, Mansell A (2007) The negative regulation of Toll-like receptor and associated pathways. Immunol Cell Biol 85: 425–434. doi: 10.1038/sj.icb.7100094
[7]
Forget G, Siminovitch KA, Brochu S, Rivest S, Radzioch D, et al. (2001) Role of host phosphotyrosine phosphatase SHP-1 in the development of murine leishmaniasis. Eur J Immunol 31: 3185–3196. doi: 10.1002/1521-4141(200111)31:11<3185::AID-IMMU3185>3.0.CO;2-J
[8]
Forget G, Gregory DJ, Whitcombe LA, Olivier M (2006) Role of host protein tyrosine phosphatase SHP-1 in Leishmania donovani-induced inhibition of nitric oxide production. Infect Immun 74: 6272–6279. doi: 10.1128/IAI.00853-05
[9]
Massa PT, Wu C (1998) Increased inducible activation of NF-kappaB and responsive genes in astrocytes deficient in the protein tyrosine phosphatase SHP-1. J Interferon Cytokine Res 18: 499–507. doi: 10.1089/jir.1998.18.499
[10]
Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, et al. (2004) Protein tyrosine phosphatases in the human genome. Cell 117: 699–711. doi: 10.1016/j.cell.2004.05.018
[11]
An H, Hou J, Zhou J, Zhao W, Xu H, et al. (2008) Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol 9: 542–550. doi: 10.1038/ni.1604
[12]
Radzioch D, Hudson T, Boule M, Barrera L, Urbance JW, et al. (1991) Genetic resistance/susceptibility to mycobacteria: phenotypic expression in bone marrow derived macrophage lines. J Leukoc Biol 50: 263–272.
[13]
Olivier M, Romero-Gallo BJ, Matte C, Blanchette J, Posner BI, et al. (1998) Modulation of interferon-gamma-induced macrophage activation by phosphotyrosine phosphatases inhibition. Effect on murine Leishmaniasis progression. J Biol Chem 273: 13944–13949. doi: 10.1074/jbc.273.22.13944
Bourassa C, Chapdelaine A, Roberts KD, Chevalier S (1988) Enhancement of the detection of alkali-resistant phosphoproteins in polyacrylamide gels. Anal Biochem 169: 356–362. doi: 10.1016/0003-2697(88)90295-3
[16]
Ribeiro-Dias F, Russo M, Marzagao Barbuto JA, Fernandes do Nascimento FR, Timenetsky J, et al. (1999) Mycoplasma arginini enhances cytotoxicity of thioglycollate-elicited murine macrophages toward YAC-1 tumor cells through production of NO. J Leukoc Biol 65: 808–814.
[17]
Jaramillo M, Olivier M (2002) Hydrogen peroxide induces murine macrophage chemokine gene transcription via extracellular signal-regulated kinase- and cyclic adenosine 5′-monophosphate (cAMP)-dependent pathways: involvement of NF-kappa B, activator protein 1, and cAMP response element binding protein. J Immunol 169: 7026–7038.
[18]
Kollewe C, Mackensen AC, Neumann D, Knop J, Cao P, et al. (2004) Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem 279: 5227–5236. doi: 10.1074/jbc.M309251200
[19]
Powers JP, Li S, Jaen JC, Liu J, Walker NP, et al. (2006) Discovery and initial SAR of inhibitors of interleukin-1 receptor-associated kinase-4. Bioorg Med Chem Lett 16: 2842–2845. doi: 10.1016/j.bmcl.2006.03.020
[20]
Blanchette J, Racette N, Faure R, Siminovitch KA, Olivier M (1999) Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Eur J Immunol 29: 3737–3744. doi: 10.1002/(SICI)1521-4141(199911)29:11<3737::AID-IMMU3737>3.0.CO;2-S
[21]
Proudfoot L, Nikolaev AV, Feng GJ, Wei WQ, Ferguson MA, et al. (1996) Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages. Proc Natl Acad Sci USA 93: 10984–10989. doi: 10.1073/pnas.93.20.10984
[22]
Feng GJ, Goodridge HS, Harnett MM, Wei XQ, Nikolaev AV, et al. (1999) Extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases differentially regulate the lipopolysaccharide-mediated induction of inducible nitric oxide synthase and IL-12 in macrophages: Leishmania phosphoglycans subvert macrophage IL-12 production by targeting ERK MAP kinase. J Immunol 163: 6403–6412.
[23]
Piedrafita D, Proudfoot L, Nikolaev AV, Xu D, Sands W, et al. (1999) Regulation of macrophage IL-12 synthesis by Leishmania phosphoglycans. Eur J Immunol 29: 235–244. doi: 10.1002/(SICI)1521-4141(199901)29:01<235::AID-IMMU235>3.0.CO;2-S
[24]
Weinheber N, Wolfram M, Harbecke D, Aebischer T (1998) Phagocytosis of Leishmania mexicana amastigotes by macrophages leads to a sustained suppression of IL-12 production. Eur J Immunol 28: 2467–2477. doi: 10.1002/(SICI)1521-4141(199808)28:08<2467::AID-IMMU2467>3.0.CO;2-1
[25]
Flandin JF, Chano F, Descoteaux A (2006) RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon-gamma-primed macrophages. Eur J Immunol 36(2): 411–20. doi: 10.1002/eji.200535079
[26]
Avril T, Freeman SD, Attrill H, Clarke RG, Crocker PR (2005) Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation. J Biol Chem 280: 19843–19851. doi: 10.1074/jbc.M502041200
[27]
Staub E, Rosenthal A, Hinzmann B (2004) Systematic identification of immunoreceptor tyrosine-based inhibitory motifs in the human proteome. Cell Signal 16: 435–456. doi: 10.1016/j.cellsig.2003.08.013
[28]
Mushegian A, Medzhitov R (2001) Evolutionary perspective on innate immune recognition. J Cell Biol 155: 705–710. doi: 10.1083/jcb.200107040
[29]
Neel BG, Gu H, Pao L (2003) The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28: 284–293. doi: 10.1016/S0968-0004(03)00091-4
[30]
Li L (2004) Regulation of innate immunity signaling and its connection with human diseases. Curr Drug Targets Inflamm Allergy 3: 81–86. doi: 10.2174/1568010043483863
[31]
Bedecs K, Elbaz N, Sutren M, Masson M, Susini C, et al. (1997) Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase. Biochem J 325 (Pt 2): 449–454.
[32]
Jiao H, Berrada K, Yang W, Tabrizi M, Platanias LC, et al. (1996) Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol 16: 6985–6992.
[33]
Matsubara H, Shibasaki Y, Okigaki M, Mori Y, Masaki H, et al. (2001) Effect of angiotensin II type 2 receptor on tyrosine kinase Pyk2 and c-Jun NH2-terminal kinase via SHP-1 tyrosine phosphatase activity: evidence from vascular-targeted transgenic mice of AT2 receptor. Biochem Biophys Res Commun 282: 1085–1091. doi: 10.1006/bbrc.2001.4695