全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Human Helminth Co-Infection: Analysis of Spatial Patterns and Risk Factors in a Brazilian Community

DOI: 10.1371/journal.pntd.0000352

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Individuals living in areas endemic for helminths are commonly infected with multiple species. Despite increasing emphasis given to the potential health impacts of polyparasitism, few studies have investigated the relative importance of household and environmental factors on the risk of helminth co-infection. Here, we present an investigation of exposure-related risk factors as sources of heterogeneity in the distribution of co-infection with Necator americanus and Schistosoma mansoni in a region of southeastern Brazil. Methodology Cross-sectional parasitological and socio-economic data from a community-based household survey were combined with remotely sensed environmental data using a geographical information system. Geo-statistical methods were used to explore patterns of mono- and co-infection with N. americanus and S. mansoni in the region. Bayesian hierarchical models were then developed to identify risk factors for mono- and co-infection in relation to community-based survey data to assess their roles in explaining observed heterogeneity in mono and co-infection with these two helminth species. Principal Findings The majority of individuals had N. americanus (71.1%) and/or S. mansoni (50.3%) infection; 41.0% of individuals were co-infected with both helminths. Prevalence of co-infection with these two species varied substantially across the study area, and there was strong evidence of household clustering. Hierarchical multinomial models demonstrated that relative socio-economic status, household crowding, living in the eastern watershed and high Normalized Difference Vegetation Index (NDVI) were significantly associated with N. americanus and S. mansoni co-infection. These risk factors could, however, only account for an estimated 32% of variability between households. Conclusions Our results demonstrate that variability in risk of N. americanus and S. mansoni co-infection between households cannot be entirely explained by exposure-related risk factors, emphasizing the possible role of other household factors in the heterogeneous distribution of helminth co-infection. Untangling the relative contribution of intrinsic host factors from household and environmental determinants therefore remains critical to our understanding of helminth epidemiology.

References

[1]  Howard SC, Donnelly CA, Kabatereine NB, Ratard RC, Brooker S (2002) Spatial and intensity-dependent variations in associations between multiple species helminth infections. Acta Tropica 83: 141–149. doi: 10.1016/S0001-706X(02)00093-1
[2]  Drake LJ, Bundy DA (2001) Multiple helminth infections in children: impact and control. Parasitology 122: (Suppl)S73–81. doi: 10.1017/S0031182000017662
[3]  Brooker S, Miguel EA, Moulin S, Luoba AI, Bundy DA, et al. (2000) Epidemiology of single and multiple species of helminth infections among school children in Busia District, Kenya. East African Medicine Journal 77: 157–161. doi: 10.4314/eamj.v77i3.46613
[4]  Chamone M, Marques CA, Atuncar GS, Pereira AL, Pereira LH (1990) Are there interactions between schistosomes and intestinal nematodes? Transactions of the Royal Society of Tropical Medicine and Hygiene 84: 557–558. doi: 10.1016/0035-9203(90)90039-H
[5]  Booth M, Bundy DA, Albonico M, Chwaya HM, Alawi KS, et al. (1998) Associations among multiple geohelminth species infections in schoolchildren from Pemba Island. Parasitology 116 (Pt 1): 85–93. doi: 10.1017/S003118209700190X
[6]  Kightlinger LK, Seed JR, Kightlinger MB (1995) The epidemiology of Ascaris lumbricoides, Trichuris trichiura, and hookworm in children in the Ranomafana rainforest, Madagascar. Journal of Parasitology 81: 159–169. doi: 10.2307/3283914
[7]  Haswell-Elkins MR, Elkins DB, Anderson RM (1987) Evidence for predisposition in humans to infection with Ascaris, hookworm, Enterobius and Trichuris in a South Indian fishing community. Parasitology 95 (Pt 2): 323–337. doi: 10.1017/S0031182000057772
[8]  Holland CV, Asaolu SO, Crompton DW, Stoddart RC, Macdonald R, et al. (1989) The epidemiology of Ascaris lumbricoides and other soil-transmitted helminths in primary school children from Ile-Ife, Nigeria. Parasitology 99 (Pt 2): 275–285. doi: 10.1017/S003118200005873X
[9]  Ferreira CS, Ferreira MU, Nogueira MR (1994) The prevalence of infection by intestinal parasites in an urban slum in Sao Paulo, Brazil. Journal of Tropical Medicine and Hygiene 97: 121–127.
[10]  Needham C, Kim HT, Hoa NV, Cong LD, Michael E, et al. (1998) Epidemiology of soil-transmitted nematode infections in Ha Nam Province, Vietnam. Tropical Medicine & International Health 3: 904–912. doi: 10.1046/j.1365-3156.1998.00324.x
[11]  Faulkner H, Turner J, Behnke J, Kamgno J, Rowlinson MC, et al. (2005) Associations between filarial and gastrointestinal nematodes. Transactions of the Royal Society of Tropical Medicine and Hygiene 99: 301–312. doi: 10.1016/j.trstmh.2004.05.006
[12]  Brito LL, Barreto ML, Silva Rde C, Assis AM, Reis MG, et al. (2006) Moderate- and Low-Intensity Co-Infections by Intestinal Helminths and Schistosoma Mansoni, Dietary Iron Intake, and Anemia in Brazilian Children. American Journal of Tropical Medicine & Hygiene 75: 939–944.
[13]  Pullan R, Brooker S (2008) The health impact of polyparasitism in humans: are we under-estimating the burden of parasitic diseases? Parasitology. in press. doi: 10.1017/s0031182008000346
[14]  Ezeamama AE, Friedman JF, Olveda RM, Acosta LP, Kurtis JD, et al. (2005) Functional significance of low-intensity polyparasite helminth infections in anemia. Journal of Infectious Disease 192: 2160–2170. doi: 10.1086/498219
[15]  Brooker S, Akhwale WS, Pullan R, Estambale B, Clarke S, et al. (2007) Epidemiology of Plasmodium-Helminth coinfeciton in Africa: potential impact on anaemia and prospects for combining control. American Journal of Tropical Medicine & Hygiene 77: 88–98.
[16]  Saldiva SR, Silveira AS, Philippi ST, Torres DM, Mangini AC, et al. (1999) Ascaris-Trichuris association and malnutrition in Brazilian children. Paediatric and Perinatal Epidemiology 13: 89–98. doi: 10.1046/j.1365-3016.1999.00145.x
[17]  Bundy DAP, Chandiwana SK, Homeida MMA, Yoon S, Mott KE (1991) The epidemiological implications of a multiple-infection approach to the control of human helminth infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 85: 274–276. doi: 10.1016/0035-9203(91)90054-3
[18]  Bundy DA, Medley GF (1992) Immuno-epidemiology of human geohelminthiasis: ecological and immunological determinants of worm burden. Parasitology 104: (Suppl)S105–119. doi: 10.1017/S0031182000075284
[19]  Warren KS (1973) Regulation of the prevalence and intensity of schistosomiasis in man: immunology or ecology? J Infect Dis 127: 595–609. doi: 10.1093/infdis/127.5.595
[20]  Raso G, Vounatsou P, Singer BH, N'Goran EK, Tanner M, et al. (2006) An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni-hookworm coinfection. Proc Natl Acad Sci U S A 103: 6934–6939. doi: 10.1073/pnas.0601559103
[21]  Fleming FM, Brooker S, Geiger SM, Caldas IR, Correa-Oliveira R, et al. (2006) Synergistic associations between hookworm and other helminth species in a rural community in Brazil. Tropical Medicine & International Health 11: 56–64. doi: 10.1111/j.1365-3156.2005.01541.x
[22]  Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, et al. (2004) Hookworm infection. New England Journal of Medicine 351: 799–807. doi: 10.1056/NEJMra032492
[23]  Friedman JF, Kanzaria HK, McGarvey ST (2005) Human schistosomiasis and anemia: the relationship and potential mechanisms. Trends in Parasitology 21: 386–392. doi: 10.1016/j.pt.2005.06.006
[24]  Brooker S, Alexander N, Geiger S, Moyeed RA, Stander J, et al. (2006) Contrasting patterns in the small-scale heterogeneity of human helminth infections in urban and rural environments in Brazil. Int J Parasitol 36: 1143–1151. doi: 10.1016/j.ijpara.2006.05.009
[25]  Brooker S, Jardim-Botelho A, Quinnell RJ, Geiger SM, Caldas IR, et al. (2007) Age-related changes in hookworm infection, anaemia and iron deficiency in an area of high Necator americanus hookworm transmission in south-eastern Brazil. Trans R Soc Trop Med Hyg 101: 146–154. doi: 10.1016/j.trstmh.2006.05.012
[26]  de Gruijter JM, van Lieshout L, Gasser RB, Verweij JJ, Brienen EA, et al. (2005) Polymerase chain reaction-based differential diagnosis of Ancylostoma duodenale and Necator americanus infections in humans in northern Ghana. Tropical Medicine & International Health 10: 574–580. doi: 10.1111/j.1365-3156.2005.01440.x
[27]  Tatem AJ, Goetz SJ, Hay SI (2004) Terra and Aqua: new data for epidemiology and public health. International Journal of Applied Earth Observation and Geoinformation 6: 33–46. doi: 10.1016/j.jag.2004.07.001
[28]  Filmer D, Pritchett LH (2001) Estimating wealth effects without expenditure data–or tears: an application to educational enrollments in states of India. Demography 38: 115–132. doi: 10.1353/dem.2001.0003
[29]  Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov Chain Monte Carlo in Practice. London: Chapman and Hall.
[30]  Victoria CG, Huttly SR, Fuchs SC, Olinto MT (1997) The role of conceptual frameworks in epidemiological analysis: a hierarchical approach. Int J Epidemiol 26: 224–227. doi: 10.1093/ije/26.1.224
[31]  Chiles J-P, Delfiner P (1999) Geostatistics. New York: Wiley.
[32]  Diggle PJ, Ribeiro PJ Jr (2007) An overview of model based geostatistics. In: York SN, editor. Model Based Geostatistics. pp. 27–45.
[33]  Ribeiro PJ Jr, Christensen OF, Diggle PJ (2003) geoR and geoRglm: Software for Model-Based Geostatistics. 3rd International Workshop on Distributed Statistical Computing.
[34]  Forrester JE, Scott ME, Bundy DA, Golden MH (1988) Clustering of Ascaris lumbricoides and Trichuris trichiura infections within households. Trans R Soc Trop Med Hyg 82: 282–288. doi: 10.1016/0035-9203(88)90448-8
[35]  Behnke JM, De Clercq D, Sacko M, Gilbert FS, Ouattara DB, et al. (2000) The epidemiology of human hookworm infections in the southern region of Mali. Trop Med Int Health 5: 343–354. doi: 10.1046/j.1365-3156.2000.00553.x
[36]  Clennon JA, King CH, Muchiri EM, Karuiki HC, Ouma JH, et al. (2004) Spatial patterns of urinary schistosomiasis infection in a highly endemic area of coastal Kenya. am J Trop Med Hyg 70: 443–448.
[37]  Shapiro AE, Tukahebwa EM, Kasten J, Clarke SE, Magnussen P, et al. (2005) Epidemiology of helminth infections and their relationship to clinical malaria in southwest Uganda. Trans R Soc Trop Med Hyg 99: 18–24. doi: 10.1016/j.trstmh.2004.02.006
[38]  Holland CV, Taren DL, Crompton DW, Nesheim MC, Sanjur D, et al. (1988) Intestinal helminthiases in relation to the socioeconomic environment of Panamanian children. Soc Sci Med 26: 209–213. doi: 10.1016/0277-9536(88)90241-9
[39]  Bethony J, Williams JT, Kloos H, Blangero J, Alves-Fraga L, et al. (2001) Exposure to Schistosoma mansoni infection in a rural area in Brazil. II: household risk factors. Trop Med Int Health 6: 136–145. doi: 10.1046/j.1365-3156.2001.00685.x
[40]  Raso G, Utzinger J, Silue KD, Ouattara A, Yapi A, et al. (2005) Disparities in parasitic infections, perceived ill health and access to health care among poorer and less poor schoolchildren of rural C?te d'Ivoire. Trop Med Int Health 10: 42–57. doi: 10.1111/j.1365-3156.2004.01352.x
[41]  Hotez P (2007) Hookworm and poverty. Ann N Y Acad Sci 1136: 38–44. doi: 10.1196/annals.1425.000
[42]  Saathoff E, Olsen A, Sharp B, Kvalsvig JD, Appleton CC, et al. (2005) Ecologic covariates of hookworm infection and reinfection in rural Kwazulu-natal/south Africa: a geographic information system-based study. Am J Trop Med Hyg 72: 384–391.
[43]  Haswell-Elkins M, Elkins D, Anderson RM (1989) The influence of individual, social group and household factors on the distribution of Ascaris lumbricoides within a community and implications for control strategies.98. doi: 10.1017/s003118200005976x
[44]  Narain K, Rajguru SK, Mahanta J (2000) Prevalence of Trichuris trichiura in relation to socio-economic and behavioural determinants of exposure to infection in rural Assam. Indian Journal of Medical Research 112: 140–146.
[45]  Olsen A, Samuelsen H, Onyango-Ouma W (2001) A study of risk factors for intestinal helminth infections using epidemiological and anthropological approaches. J Biosoc Sci 33: 569–584. doi: 10.1017/S0021932001005697
[46]  Clennon JA, Mungai P, Muchiri E, King CH, Kitron U (2006) Spatial and temporal variations in local transmission of Schistosoma haematobium in Msambweni, Kenya. Am J Trop Med Hyg 75: 1034.
[47]  Pinot de Moira A, Fulford AJ, Kabatereine NB, Kazibwe F, Ouma JH, et al. (2007) Microgeographical and tribal variations in water contact and Schistosoma mansoni exposure within a Ugandan fishing community. Trop Med Int Health 12: 724–735. doi: 10.1111/j.1365-3156.2007.01842.x
[48]  Borooah VK (2002) Logit and Probit: ordered and Multinomial Models. Thousand Oaks, CA: Sage Publications.
[49]  Watts S, Khallaayoune K, Bensefia R, Laamrani H, Gryseels B (1998) The study of human behavior and schistosomiasis transmission in an irrigated area in Morocco. Soc Sci Med 46: 755–765. doi: 10.1016/S0277-9536(97)00171-8
[50]  Bethony J, Williams JT, Brooker S, Gazzinelli A, Gazzinelli MF, et al. (2004) Exposure to Schistosoma mansoni infection in a rural area in Brazil. Part III: household aggregation of water-contact behaviour. Trop Med Int Health 9: 381–389. doi: 10.1111/j.1365-3156.2004.01203.x
[51]  Williams-Blangero S, McGarvey ST, Subedi J, Wiest PM, Upadhayay RP, et al. (2002) Genetic component to susceptibility to Trichuris trichiura: evidence from two Asian populations. Genet Epidemiol 22: 254–264. doi: 10.1002/gepi.0187
[52]  Bethony J, Gazzinelli A, Lopes A, Pereira W, Alves-Oliveira L, et al. (2001) Genetic epidemiology of fecal egg excretion during Schistosoma mansoni infection in an endemic area in Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 96: (Suppl)49–55. doi: 10.1590/S0074-02762001000900007
[53]  Bundy DAP, Golden MH (1987) The impact of host nutrition on gastrointestinal helminth populations. Parasitology 95: 623–635. doi: 10.1017/S0031182000058042
[54]  Loukas A, Constant SL, Bethony JM (2005) Immunobiology of hookworm infection. FEMS Immunol Med Microbiol 43: 115–124. doi: 10.1016/j.femsim.2004.11.006
[55]  Pearce EJ, MacDonald AS (2002) The immunobiology of schistosomiasis. Nat Rev Immunol 2: 499–511. doi: 10.1038/nri843
[56]  Cox FE (2001) Concomitant infections, parasites and immune responses. Parasitology 122: (Suppl)S23–38. doi: 10.1017/S003118200001698X
[57]  Quinnell RJ (2003) Genetics of susceptibility to human helminth infection. Int J Parasitol 33: 1219–1231. doi: 10.1016/S0020-7519(03)00175-9
[58]  Bethony J, Quinell RJ (2007) Genetic epidemiology of human schistosomiasis in Brazil. Acta Trop [epub ahead of print].
[59]  Williams-Blangero S, Blangero J, Bradley M (1997) Quantitative genetic analysis of susceptibility to hookworm infection in a population from rural Zimbabwe. Hum Biol 69: 201–208.
[60]  Bethony J, Williams JT, Blangero J, Kloos H, Gazzinelli A, et al. (2002) Additive host genetic factors influence fecal egg excretion rates during Schistosoma mansoni infection in a rural area in Brazil. Am J Trop Med Hyg 67: 336–343.
[61]  Ellis MK, Raso G, Li Y-S, Rong Z, Chen H-G, et al. (2007) Familial aggregation of human susceptability to co-and multiple helminth infections in a population from the Poyang Lake region, China. Int J Parasitol. doi: 10.1016/j.ijpara.2007.02.008
[62]  Stohler RA, Curtis J, Minchella DJ (2005) A comparison of microsatellite polymorphism and heterozygosity among field and laboratory populations of Schistosoma mansoni. Int J Parasitol 34: 595–601. doi: 10.1016/j.ijpara.2003.11.026
[63]  Curtis J, Sorensen RE, Minchella DJ (2002) Schistosome genetic diversity : the implications of population structure as detected with microsatellite markers. Parasitology 125: S51–S59. doi: 10.1017/S0031182002002020
[64]  Hawdon JM, Li T, Zhan B, Blouin MS (2001) Genetic structure of populations of the human hookworm, Necator americanus, in China. Mol Ecol 10: 1433–1437. doi: 10.1046/j.1365-294X.2001.01296.x
[65]  Chan L, Bundy DA, Kan SP (1994) Genetic relatedness as a determinant of predisposition to Ascaris lumbricoides and Trichuris trichiura infection. Parasitology 108 (Pt 1): 77–80. doi: 10.1017/S0031182000078549
[66]  Chan L, Bundy DA, Kan SP (1994) Aggregation and predisposition to Ascaris lumbricoides and Trichuris trichiura at the familial level. Trans R Soc Trop Med Hyg 88: 46–48. doi: 10.1016/0035-9203(94)90492-8
[67]  Williams-Blangero S, Subedi J, Upadhayay RP, Manral DB, Rai DR, et al. (1999) Genetic analysis of susceptibility to infection with Ascaris lumbricoides. Am J Trop Med Hyg 60: 921–926.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133