Visceral leishmaniasis is a potentially fatal infectious disease caused by the protozoan parasite Leishmania infantum/chagasi in the New World, or by L. donovani or L. infantum/chagasi in the Old World. Infection leads to a variety of outcomes ranging from asymptomatic infection to active disease, characterized by fevers, cachexia, hepatosplenomegaly and suppressed immune responses. We reasoned that events occurring during the initial few hours when the parasite encounters cells of the innate and adaptive immune systems are likely to influence the eventual immune response that develops. Therefore, we performed gene expression analysis using Affymetrix U133Plus2 microarray chips to investigate a model of early infection with human monocyte-derived macrophages (MDMs) challenged with wild-type L. chagasi parasites, with or without subsequent co-culture with Leishmania-na?ve, autologous T-cells. Microarray data generated from total RNA were analyzed with software from the Bioconductor Project and functional clustering and pathway analysis were performed with DAVID and Gene Set Enrichment Analysis (GSEA), respectively. Many transcripts were down-regulated by infection in cultures containing macrophages alone, and the pattern indicated a lack of a classically activated phenotype. By contrast, the addition of autologous Leishmania-na?ve T cells to infected macrophages resulted in a pattern of gene expression including many markers of type 1 immune cytokine activation (IFN-γ, IL-6, IL-1α, IL-1β). There was simultaneous up-regulation of a few markers of immune modulation (IL-10 cytokine accumulation; TGF-β Signaling Pathway). We suggest that the initial encounter between L. chagasi and cells of the innate and adaptive immune system stimulates primarily type 1 immune cytokine responses, despite a lack of classical macrophage activation. This local microenvironment at the site of parasite inoculation may determine the initial course of immune T-cell development.
References
[1]
Wilson ME, Jeronimo SMB, Pearson RD (2005) Immunopathogenesis of infection with the visceralizing leishmania species. Microb Pathog 38(4): 147–160. doi: 10.1016/j.micpath.2004.11.002
[2]
Jeronimo SMB, Teixeira MJ, Sousa A, Thielking P, Pearson RD, et al. (2000) Natural history of Leishmania (Leishmania) chagasi infection in northeastern Brazil: Long-term follow-up. Clin Infect Dis 30(3): 608–609. doi: 10.1086/313697
[3]
Carvalho EM, Bacellar O, Barral A, Badaro R, Johnson WD Jr. (1989) Antigen-specific immunosuppression in visceral leishmaniasis is cell mediated. J Clin Invest 83(3): 860–864. doi: 10.1172/JCI113969
[4]
Ghalib HW, Whittle JA, Kubin M, Hashim FA, el-Hassan AM, et al. (1995) IL-12 enhances Th1-type responses in human Leishmania donovani infections. J Immunol 154(9): 4623–4629.
[5]
Bacellar O, Brodskyn C, Guerreiro J, Barral-Netto M, Costa CH, et al. (1996) Interleukin-12 restores interferon-gamma production and cytotoxic responses in visceral leishmaniasis. J Infect Dis 173(6): 1515–1518. doi: 10.1093/infdis/173.6.1515
[6]
Karp CL, el-Safi SH, Wynn TA, Satti MM, Kordofani AM, et al. (1993) In vivo cytokine profiles in patients with kala-azar: marked elevation of both interleukin-10 and interferon-gamma. J Clin Invest 91(4): 1644–1648. doi: 10.1172/JCI116372
[7]
Ghalib HW, Piuvezam MR, Skeiky YA, Siddig M, Hashim FA, et al. (1993) Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest 92(1): 324–329. doi: 10.1172/JCI116570
[8]
Caldas A, Favali C, Aquino D, Vinhas V, van Weyenbergh J, et al. (2005) Balance of IL-10 and IFN-γ plasma levels in human visceral leishmaniasis: Implications in the pathogenesis. BMC Infect Dis 5: 113. 10.1186/1471-2334-5-113. doi: 10.1186/1471-2334-5-113
[9]
Peruhype-Magalhaes V, Martins-Filho OA, Prata A, Silva Lde A, Rabello A, et al. (2006) Mixed inflammatory/regulatory cytokine profile marked by simultaneous raise of interferon-gamma and interleukin-10 and low frequency of tumour necrosis factor-α+ monocytes are hallmarks of active human visceral leishmaniasis due to Leishmania chagasi infection. Clin Exp Immunol 146(1): 124–132. 10.1111/j.1365-2249.2006.03171.x. doi: 10.1111/j.1365-2249.2006.03171.x
[10]
Nylen S, Sacks D (2007) Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 28(9): 378–384. 10.1016/j.it.2007.07.004. doi: 10.1016/j.it.2007.07.004
[11]
Barral-Netto M, Barral A, Santos SB, Carvalho EM, Badaro R, et al. (1991) Soluble IL-2 receptor as an agent of serum-mediated suppression in human visceral leishmaniasis. J Immunol 147(1): 281–284.
[12]
Atta AM, D'Oliveira , Correa J, Atta ML, Almeida RP, et al. (1998) Anti-leishmanial IgE antibodies: A marker of active disease in visceral leishmaniasis. Am J Trop Med Hyg 59(3): 426–430.
[13]
Nascimento ET, Gantt KR, Pontes NN, Bacelar O, Luz VE, et al. (2002) TGF-β in acute visceral leishmaniasis. Am J Trop Med Hyg 67(2): 262.
[14]
Buates S, Matlashewski G (2001) General suppression of macrophage gene expression during Leishmania donovani infection. J Immunol 166(5): 3416–3422.
[15]
Bertholet S, Dickensheets HL, Sheikh F, Gam AA, Donnelly RP, et al. (2003) Leishmania donovani-induced expression of suppressor of cytokine signaling 3 in human macrophages: A novel mechanism for intracellular parasite suppression of activation. Infect Immun 71(4): 2095–2101. doi: 10.1128/IAI.71.4.2095-2101.2003
[16]
Misra S, Tripathi MK, Chaudhuri G (2005) Down-regulation of 7SL RNA expression and impairment of vesicular protein transport pathways by Leishmania infection of macrophages. J Biol Chem 280(32): 29364–29373. 10.1074/jbc.M504162200. doi: 10.1074/jbc.M504162200
[17]
Dogra N, Warburton C, McMaster WR (2007) Leishmania major abrogates gamma interferon-induced gene expression in human macrophages from a global perspective. Infect Immun 75(7): 3506–3515. doi: 10.1128/IAI.00277-07
[18]
Berens RL, Brun R, Krassner SM (1976) A simple monophasic medium for axenic culture of hemoflagellates. J Parasitol 62(3): 360–365. doi: 10.2307/3279142
[19]
Jeronimo SMB, Duggal P, Braz RF, Cheng C, Monteiro GR, et al. (2004) An emerging peri-urban pattern of infection with Leishmania chagasi, the protozoan causing visceral leishmaniasis in northeast Brazil. Scand J Infect Dis 36(6–7): 443–449. doi: 10.1080/00365540410020451
[20]
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 5(10): R80. 10.1186/gb-2004-5-10-r80. doi: 10.1186/gb-2004-5-10-r80
[21]
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2): 249–264. 10.1093/biostatistics/4.2.249. doi: 10.1093/biostatistics/4.2.249
[22]
Wu Z, Irizarry RA, Gentleman RC, Martinez-Murillo F, Spencer F (2004) A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 99(468): 909–917. doi: 10.1198/016214504000000683
[23]
Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573(1–3): 83–92. 10.1016/j.febslet.2004.07.055. doi: 10.1016/j.febslet.2004.07.055
[24]
Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, et al. (2006) RankProd: A Bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22(22): 2825–2827. btl476 [pii]; 10.1093/bioinformatics/btl476 [doi]. doi: 10.1093/bioinformatics/btl476
[25]
Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16): 9440–9445. 10.1073/pnas.1530509100. doi: 10.1073/pnas.1530509100
[26]
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol 4(5): P3. doi: 10.1186/gb-2003-4-5-p3
[27]
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43): 15545–15550. 0506580102 [pii]; 10.1073/pnas.0506580102 [doi]. doi: 10.1073/pnas.0506580102
[28]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2?(Δ(Δ(CT)) method. Methods 25(4): 402–408. 10.1006/meth.2001.1262. doi: 10.1006/meth.2001.1262
[29]
Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, et al. (2002) Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A 99(3): 1503–1508. 10.1073/pnas.022649799. doi: 10.1073/pnas.022649799
[30]
Doi N, Zenno S, Ueda R, Ohki-Hamazaki H, Ui-Tei K, et al. (2003) Short-interfering-RNA-mediated gene silencing in mammalian cells requires dicer and eIF2C translation initiation factors. Curr Biol 13(1): 41–46. doi: 10.1016/S0960-9822(02)01394-5
[31]
Manevich Y, Fisher AB (2005) Peroxiredoxin 6, a 1-cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic Biol Med 38(11): 1422–1432. 10.1016/j.freeradbiomed.2005.02.011. doi: 10.1016/j.freeradbiomed.2005.02.011
[32]
Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73(2): 209–212. doi: 10.1189/jlb.0602325
[33]
Bofill M, Almirall E, McQuaid A, Pena R, Ruiz-Hernandez R, et al. (2004) Differential expression of the cytokine receptors for human interleukin (IL)-12 and IL-18 on lymphocytes of both CD45RA+ and CD45RO+ phenotype from tonsils, cord and adult peripheral blood. Clin Exp Immunol 138(3): 460–465. 10.1111/j.1365-2249.2004.02651.x. doi: 10.1111/j.1365-2249.2004.02651.x
[34]
Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: The multipurpose protein. Cell Mol Life Sci 59(4): 627–647. doi: 10.1007/s00018-002-8454-2
[35]
Brocke-Heidrich K, Kretzschmar AK, Pfeifer G, Henze C, Loffler D, et al. (2004) Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a bcl-2 family-independent survival pathway closely associated with Stat3 activation. Blood 103(1): 242–251. 10.1182/blood-2003-04-1048. doi: 10.1182/blood-2003-04-1048
[36]
Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2(11): 845–858. doi: 10.1038/nri933
[37]
Wilson ME, Young BM, Davidson BL, Mente KA, McGowan SE (1998) The importance of TGF-β in murine visceral leishmaniasis. J Immunol 161(11): 6148–6155.
[38]
Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-β. Annu Rev Immunol 16: 137–161. 10.1146/annurev.immunol.16.1.137. doi: 10.1146/annurev.immunol.16.1.137
[39]
Rodriguez NE, Chang HK, Wilson ME (2004) Novel program of macrophage gene expression induced by phagocytosis of Leishmania chagasi. Infect Immun 72(4): 2111–2122. doi: 10.1128/IAI.72.4.2111-2122.2004
[40]
Chaussabel D, Semnani RT, McDowell MA, Sacks D, Sher A, et al. (2003) Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102(2): 672–681. 10.1182/blood-2002-10-3232. doi: 10.1182/blood-2002-10-3232
[41]
Rogers KA, Titus RG (2004) The human cytokine response to Leishmania major early after exposure to the parasite in vitro. J Parasitol 90(3): 557–563. doi: 10.1645/GE-3317
[42]
Reiner NE, Ng W, Wilson CB, McMaster WR, Burchett SK (1990) Modulation of in vitro monocyte cytokine responses to Leishmania donovani: Interferon-gamma prevents parasite-induced inhibition of interleukin-1 production and primes monocytes to respond to Leishmania by producing both tumor necrosis factor-alpha and interleukin-1. J Clin Invest 85(6): 1914–1924. doi: 10.1172/JCI114654
[43]
Blanchette J, Racette N, Faure R, Siminovitch KA, Olivier M (1999) Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Eur J Immunol 29(11): 3737–3744. doi: 10.1002/(SICI)1521-4141(199911)29:11<3737::AID-IMMU3737>3.0.CO;2-S
[44]
Streit JA, Donelson JE, Agey MW, Wilson ME (1996) Developmental changes in the expression of Leishmania chagasi gp63 and heat shock protein in a human macrophage cell line. Infect Immun 64(5): 1810–1818.
[45]
Rodriguez NE, Gaur U, Wilson ME (2006) Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages. Cell Microbiol 8(7): 1106–1120. 10.1111/j.1462-5822.2006.00695.x. doi: 10.1111/j.1462-5822.2006.00695.x
[46]
Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80(6): 1298–1307. 10.1189/jlb.0406249. doi: 10.1189/jlb.0406249
[47]
Sallusto F, Lenig D, Mackay CR, Lanzavecchia A (1998) Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187(6): 875–883. doi: 10.1084/jem.187.6.875