Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a
References
[1]
Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, et al. (2006) Soil- transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367: 1521–1532. doi: 10.1016/S0140-6736(06)68653-4
[2]
Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC (2004) Drug resistance in veterinary helminths. Trends Parasitol 20: 469–476. doi: 10.1016/j.pt.2004.07.010
[3]
Pomroy WE (2006) Anthelmintic resistance in New Zealand: a perspective on recent findings and options for the future. N Z Vet J 54: 265–270. doi: 10.1080/00480169.2006.36709
[4]
Besier B (2007) New anthelmintics for livestock: the time is right. Trends Parasitol 23: 21–24. doi: 10.1016/j.pt.2006.11.004
[5]
Gilleard JS, Beech RN (2007) Population genetics of anthelmintic resistance in parasitic nematodes. Parasitology 134: 1133–1147. doi: 10.1017/S0031182007000066
[6]
Boag PR, Newton SE, Gasser RB (2001) Molecular aspects of sexual development and reproduction in nematodes and schistosomes. Adv Parasitol 50: 153–198. doi: 10.1016/s0065-308x(01)50031-7
[7]
Nisbet AJ, Cottee PA, Gasser RB (2004) Molecular biology of reproduction and development in parasitic nematodes: progress and opportunities. Int J Parasitol 34: 125–138. doi: 10.1016/j.ijpara.2003.09.012
[8]
Nikolaou S, Gasser RB (2006) Extending from PARs in Caenorhabditis elegans to homologues in Haemonchus contortus and other parasitic nematodes. Parasitology 134: 461–482. doi: 10.1017/S0031182006001727
[9]
The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012–2018. doi: 10.1126/science.282.5396.2012
[10]
Jiang M, Ryu J, Kiraly M, Duke K, Reinke V, et al. (2001) Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proc Natl Acad Sci U S A 98: 218–223. doi: 10.1073/pnas.011520898
[11]
Kim SK, Lund J, Kiraly M, Duke K, Jiang M, et al. (2001) A gene expression map for Caenorhabditis elegans. Science 293: 2087–2092. doi: 10.1126/science.1061603
[12]
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811. doi: 10.1038/35888
Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, et al. (2003) Systemic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421: 231–237. doi: 10.1038/nature01278
[16]
Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PV, et al. (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1: e12. doi:10.1371/journal.pbio.0000012. doi: 10.1371/journal.pbio.0000012
[17]
Sugimoto A (2004) High-throughput RNAi in Caenorhabditis elegans: genome-wide screens and functional genomics. Differentiation 72: 81–91. doi: 10.1111/j.1432-0436.2004.07202004.x
[18]
Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, et al. (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434: 462–469. doi: 10.1038/nature03353
[19]
Blaxter M (1998) Caenorhabditis elegans is a nematode. Science 282: 2041–2046. doi: 10.1126/science.282.5396.2041
[20]
Parkinson J, Whitton C, Schmid R, Thomson M, Blaxter M (2004) NEMBASE: a resource for parasitic nematode ESTs. Nucleic Acids Res 32: D427–D430. doi: 10.1093/nar/gkh018
[21]
Burglin TR, Lobos E, Blaxter ML (1998) Caenorhabditis elegans as a model for parasitic nematodes. Int J Parasitol 28: 395–411. doi: 10.1016/S0020-7519(97)00208-7
[22]
Hashmi S, Tawe W, Lustigman S (2001) Caenorhabditis elegans and the study of gene function in parasites. Trends Parasitol 17: 387–393. doi: 10.1016/S1471-4922(01)01986-9
[23]
Brooks DR, Isaac RE (2002) Functional genomics of parasitic worms: the dawn of a new era. Parasitol Int 51: 319–325. doi: 10.1016/S1383-5769(02)00063-6
[24]
Boyle JP, Yoshino TP (2003) Gene manipulation in parasitic helminths. Int J Parasitol 33: 1259–1268. doi: 10.1016/S0020-7519(03)00159-0
[25]
Knox DP (2004) Technological advances and genomics in metazoan parasites. Int J Parasitol 34: 139–152. doi: 10.1016/j.ijpara.2003.10.013
[26]
Aboobaker AA, Blaxter ML (2004) Functional genomics for parasitic nematodes and platyhelminths. Trends Parasitol 20: 178–184. doi: 10.1016/j.pt.2004.01.016
[27]
Foster JM, Zhang Y, Kumar S, Carlow CK (2005) Mining nematode genome data for novel drug targets. Trends Parasitol 21: 101–104. doi: 10.1016/j.pt.2004.12.002
[28]
Britton C, Murray L (2006) Using Caenorhabditis elegans for functional analysis of genes of parasitic nematodes. Int J Parasitol 36: 651–659. doi: 10.1016/j.ijpara.2006.02.010
[29]
Mitreva M, Zarlenga DS, McCarter JP, Jasmer DP (2007) Parasitic nematodes - from genomes to control. Vet Parasitol 148: 31–42. doi: 10.1016/j.vetpar.2007.05.008
Peng W, Yuan K, Hu M, Gasser RB (2007) Recent insights into the epidemiology and genetics of Ascaris in China using molecular tools. Parasitology 134: 325–330. doi: 10.1017/S0031182006001521
[32]
Douvres FW, Urban JF Jr (1983) Factors contributing to the in vitro development of Ascaris suum from second-stage larvae to mature adults. J Parasitol 69: 549–558. doi: 10.2307/3281369
[33]
Islam MK, Miyoshi T, Yamada M, Tsuji N (2005) Pyrophosphatase of the roundworm Ascaris suum plays an essential role in the worm's molting and development. Infect Immun 73: 1995–2004. doi: 10.1128/IAI.73.4.1995-2004.2005
[34]
Gao G, Raikar S, Davenport B, Mutapcic L, Montgomery R, et al. (2006) Cross-species RNAi: selected Ascaris suum dsRNAs can sterilize Caenorhabditis elegans. Mol Biochem Parasitol 146: 124–128. doi: 10.1016/j.molbiopara.2005.11.003
[35]
Murrell KD, Slotved HC, Eriksen L, Bjerregaard J, Nansen P, et al. (1997) Improved method for the recovery of Ascaris suum larvae from pig intestinal mucosa. J Parasitol 83: 321–324. doi: 10.2307/3284466
[36]
Douvres FW, Tromba FG, Malakatis GM (1969) Morphogenesis and migration of Ascaris suum larvae developing to fourth stage in swine. J Parasitol 55: 689–712. doi: 10.2307/3277198
[37]
Pilitt PA, Lichtenfels JR, Tromba FG, Madden PA (1981) Differentiation of late fourth and early fifth stages of Ascaris suum Goeze, 1782 (Nematoda: Ascaridoidea) in swine. Proc Helm Soc Washington 48: 1–7.
[38]
Huang CQ, Chen L, Zou FC, Zhu XQ (2006) Studies on methods for collecting larvae of different developmental stages of Ascaris suum. Trop Med 6: 487–489 (in Chinese).
[39]
Peng W, Yuan K, Hu M, Peng G, Zhou X, et al. (2006) Experimental infections of pigs and mice with selected genotypes of Ascaris. Parasitology 133: 651–657. doi: 10.1017/S0031182006000643
[40]
Fagerholm HP, Nansen P, Roepstorff A, Frandsen F, Eriksen L (2000) Differentiation of cuticular structures during the growth of the third-stage larva of Ascaris suum (Nematoda, Ascaridoidea) after emerging from the egg. Parasitol Res 86: 630–633. doi: 10.1007/PL00008543
[41]
Nisbet AJ, Gasser RB (2004) Profiling of gender-specific gene expression for Trichostrongylus vitrinus (Nematode: Strongylida) by microarray analysis of expressed sequence tag libraries constructed by suppressive-subtractive hybridization. Int J Parasitol 34: 633–643. doi: 10.1016/j.ijpara.2003.12.007
[42]
Cottee PA, Nisbet AJ, Abs EL-Osta YG, Webster TL, Gasser RB (2006) Construction of gender-enriched cDNA archives for adult Oesophagostomum dentatum by suppressive-subtractive hybridization and a microarray analysis of expressed sequence tags. Parasitology 132: 691–708. doi: 10.1017/S0031182005009728
[43]
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30: e15. doi: 10.1093/nar/30.4.e15
[44]
McNeel RL, Mersmann HJ (1999) Distribution and quantification of betal-, beta2-, and beta3-adrenergic receptor subtype transcripts in porcine tissues. J Anim Sci 77: 611–612.
[45]
Campbell BE, Nagaraj SH, Hu M, Zhong W, Sternberg PW, et al. (2008) Gender-enriched transcripts in Haemonchus contortus - predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans. Int J Parasitol 38: 65–83. doi: 10.1016/j.ijpara.2007.07.001
[46]
Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot Eng 10: 1–6. doi: 10.1093/protein/10.1.1
[47]
Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. pp. 122–130. Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (ISMB 6), AAAI Press, Menlo Park, California,.
[48]
Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783–779. doi: 10.1016/j.jmb.2004.05.028
[49]
Sonnhammer ELL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. pp. 175–182. Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, Menlo Park, CA, AAAI,.
[50]
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 305: 567–580. doi: 10.1006/jmbi.2000.4315
[51]
Moller S, Croning MDR, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17: 646–653. doi: 10.1093/bioinformatics/17.7.646
[52]
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res 35: W585–W587. doi: 10.1093/nar/gkm259
[53]
Zhong W, Sternberg PW (2006) Genome-wide prediction of C. elegans genetic interactions. Science 311: 1481–1484. doi: 10.1126/science.1123287
[54]
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29. doi: 10.1038/75556
[55]
Reinke V, Smith HE, Nance J, Wang J, Van Doren C, et al. (2000) A global profile of germline gene expression in C. elegans. Mol Cell 6: 605–616. doi: 10.1016/S1097-2765(00)00059-9
[56]
Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature 431: 338–342. doi: 10.1038/nature02872
[57]
Geldhof P, Visser A, Clark D, Saunders G, Britton C, et al. (2007) RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects. Parasitology 134: 609–619. doi: 10.1017/S0031182006002071
[58]
Knox DP, Geldhof P, Visser A, Britton C (2007) RNA interference in parasitic nematodes of animals: a reality check? Trends Parasitol 23: 105–107. doi: 10.1016/j.pt.2007.01.007
[59]
Lebioda L, Stec B, Brewer JM (1989) The structure of yeast enolase at 2.25-? resolution. An 8-fold beta+alpha-barrel with a novel beta beta alpha alpha (beta alpha) 6 topology. J Biol Chem 264: 3685–3693.
[60]
Donald DL (1997) C. elegans II. New York: Cold Spring Harbor Laboratory Press.
[61]
Andrade MA, Siles-Lucas M, López-Abán J, Carranza C, Pérez-Arellano JL, et al. (2005) Antigens from Ascaris suum trigger in vitro macrophage NO production. Parasite Immunol. 2005 27: 235–242. doi: 10.1111/j.1365-3024.2005.00774.x
[62]
Gorgoni B, Gray NK (2004) The roles of cytoplasmic poly(A)-binding proteins in regulating gene expression: a developmental perspective. Brief Funct Genom Proteom 3: 125–141. doi: 10.1093/bfgp/3.2.125
[63]
Kressler D, de la Cruz J, Rojo M, Linder P (1997) Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 17: 7283–7294.
[64]
Powell- Coffman JA, Knight J, Wood WB (1996) Onset of C. elegans gastrulation is blocked by inhibition of embroyonic transcription with an RNA polymerase antisense RNA. Dev Biol 178: 472–483. doi: 10.1006/dbio.1996.0232
[65]
Yu HS, Park SK, Lee KH, Lee SJ, Choi SH, et al. (2007) Anisakis simplex: analysis of expressed sequence tags (ESTs) of third-stage larva. Exp Parasitol 117: 51–56. doi: 10.1016/j.exppara.2007.03.009
[66]
Kass J, Jacob TC, Kim P, Kaplan JM (2001) The EGL-3 proprotein convertase regulates mechanosensory responses of Caenorhabditis elegans. J Neurosci 21: 9265–9272.
[67]
Tissenbaum HA, Hawdon J, Perregaux M, Hotez P, Guarente L, et al. (2001) A common muscarinic pathway for diapause recovery in the distantly related nematode species Caenorhabditis elegans and Ancylostoma caninum. Proc Natl Acad Sci U S A 97: 460–465. doi: 10.1073/pnas.97.1.460
[68]
Brand A, Hawdon JM (2004) Phosphoinositide-3-OH-kinase inhibitor LY294002 prevents activation of Ancylostoma caninum and Ancylostoma ceylanicum third-stage infective larvae. Int J Parasitol 34: 909–914. doi: 10.1016/j.ijpara.2004.04.003
[69]
Datu BJ, Gasser RB, Nagaraj SH, Ong EK, O'Donoghue P, et al. (2008) Transcriptional changes in the hookworm, Ancylostoma caninum, during the transition from a free-living to a parasitic larva. PLoS Negl Trop Dis 2: e130. doi:10.1371/journal.pntd.0000130. doi: 10.1371/journal.pntd.0000130
[70]
Moser JM, Freitas T, Arasu P, Gibson G (2005) Gene expression profiles associated with the transition to parasitism in Ancylostoma caninum larvae. Mol Biochem Parasitol 143: 39–48. doi: 10.1016/j.molbiopara.2005.04.012