全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Proteomic Analysis of Skin Invasion by Blood Fluke Larvae

DOI: 10.1371/journal.pntd.0000262

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background During invasion of human skin by schistosome blood fluke larvae (cercariae), a multicellular organism breaches the epidermis, basement membrane, and dermal barriers of skin. To better understand the pathobiology of this initial event in schistosome infection, a proteome analysis of human skin was carried out following invasion by cercariae of Schistosoma mansoni. Methodology and Results Human skin samples were exposed to cercariae for one-half hour to two hours. Controls were exposed to water used to collect cercariae in an identical manner, and punctured to simulate cercarial tunnels. Fluid from both control and experimental samples was analyzed by LC/MS/MS using a linear ion trap in “triple play” mode. The coexistence of proteins released by cercariae and host skin proteins from epidermis and basement membrane confirmed that cercarial tunnels in skin were sampled. Among the abundant proteins secreted by cercariae was the cercarial protease that has been implicated in degradation of host proteins, secreted proteins proposed to mediate immune invasion by larvae, and proteins implicated in protection of parasites against oxidative stress. Components of the schistosome surface tegument, previously identified with immune serum, were also released. Both lysis and apoptosis of epidermal cells took place during cercarial invasion of the epidermis. Components of lysed epidermal cells, including desmosome proteins which link cells in the stratum granulosum and stratum spinosum, were identified. While macrophage-derived proteins were present, no mast cell or lymphocyte cytokines were identified. There were, however, abundant immunoglobulins, complement factors, and serine protease inhibitors in skin. Control skin samples incubated with water for the same period as experimental samples ensured that invasion-related proteins and host protein fragments were not due to nonspecific degeneration of the skin samples. Conclusions This analysis identified secreted proteins from invasive larvae that are released during invasion of human skin. Analysis of specific host proteins in skin invaded by cercariae served to highlight both the histolytic events facilitating cercarial invasion, and the host defenses that attempt to arrest or retard invasion. Proteins abundant in psoriatic skin or UV and heat-stressed skin were not abundant in skin invaded by cercariae, suggesting that results did not reflect general stress in the surgically removed skin specimen. Abundant immunoglobulins, complement factors, and serine protease inhibitors in skin form a biochemical

References

[1]  Elias PM (1996) Stratum corneum architecture, metabolic activity and interactivity with subjacent cell layers. Exp Dermatol 5: 191–201. doi: 10.1111/j.1600-0625.1996.tb00117.x
[2]  Dorsey CH, Cousin CE, Lewis FA, Stirewalt MA (2002) Ultrastructure of the Schistosoma mansoni cercaria. Micron 33: 279–323. doi: 10.1016/S0968-4328(01)00019-1
[3]  Stirewalt MA (1974) Schistosoma mansoni: cercaria to schistosomule. Adv Parasitol 12: 115–182. doi: 10.1016/s0065-308x(08)60388-7
[4]  Haas W, Schmitt R (1982) Characterization of chemical stimuli for the penetration of Schistosoma mansoni cercariae. I. Effective substances, host specificity. Z Parasitenkd 66: 293–307. doi: 10.1007/BF00925346
[5]  Haas W, Diekhoff D, Koch K, Schmalfuss G, Loy C (1997) Schistosoma mansoni cercariae: stimulation of acetabular gland secretion is adapted to the chemical composition of mammalian skin. J Parasitol 83: 1079–1085. doi: 10.2307/3284366
[6]  McKerrow JH, Keene WE, Jeong KH, Werb Z (1983) Degradation of extracellular matrix by larvae of Schistosoma mansoni. I. Degradation by cercariae as a model for initial parasite invasion of host. Lab Invest 49: 195–200.
[7]  Austin FG, Stirewalt MA, Danziger RE (1972) Schistosoma mansoni: stimulatory effect of rat skin lipid fractions on cercarial penetration behavior. Exp Parasitol 31: 217–224. doi: 10.1016/0014-4894(72)90112-9
[8]  Mountford AP, Trottein F (2004) Schistosomes in the skin: a balance between immune priming and regulation. Trends Parasitol 20: 221–226. doi: 10.1016/j.pt.2004.03.003
[9]  McKerrow JH, Newport G, Fishelson Z (1991) Recent insights into the structure and function of a larval proteinase involved in host infection by a multicellular parasite. Proc Soc Exp Biol Med 197: 119–124. doi: 10.3181/00379727-197-43233
[10]  Whitfield PJ, Bartlett A, Brown MB, Marriott C (2003) Invasion by schistosome cercariae: studies with human skin explants. Trends Parasitol 19: 339–340. doi: 10.1016/S1471-4922(03)00143-0
[11]  Curwen RS, Ashton PD, Sundaralingam S, Wilson RA (2006) Identification of novel proteases and immunomodulators in the secretions of schistosome cercariae that facilitate host entry. Mol Cell Proteomics 5: 835–844. doi: 10.1074/mcp.M500313-MCP200
[12]  Knudsen GM, Medzihradszky KF, Lim KC, Hansell E, McKerrow JH (2005) Proteomic analysis of Schistosoma mansoni cercarial secretions. Mol Cell Proteomics 4: 1862–1875. doi: 10.1074/mcp.M500097-MCP200
[13]  Salter JP, Choe Y, Albrecht H, Franklin C, Lim KC, et al. (2002) Cercarial elastase is encoded by a functionally conserved gene family across multiple species of schistosomes. J Biol Chem 277: 24618–24624. doi: 10.1074/jbc.M202364200
[14]  Salter JP, Lim KC, Hansell E, Hsieh I, McKerrow JH (2000) Schistosome invasion of human skin and degradation of dermal elastin are mediated by a single serine protease. J Biol Chem 275: 38667–38673. doi: 10.1074/jbc.M006997200
[15]  Choudhary JS, Blackstock WP, Creasy DM, Cottrell JS (2001) Matching peptide mass spectra to EST and genomic DNA databases. Trends Biotechnol 19: S17–22. doi: 10.1016/S0167-7799(01)01795-4
[16]  Gobert GN, Stenzel DJ, Jones MK, Allen DE, McManus DP (1997) Schistosoma japonicum: immunolocalization of paramyosin during development. Parasitology 114 ( Pt 1): 45–52. doi: 10.1017/S0031182096008001
[17]  Deng J, Gold D, LoVerde PT, Fishelson Z (2003) Inhibition of the complement membrane attack complex by Schistosoma mansoni paramyosin. Infect Immun 71: 6402–6410. doi: 10.1128/IAI.71.11.6402-6410.2003
[18]  Rao KVN, Ramaswamy K (2000) Cloning and expression of a gene encoding SM16, an anti-inflammatory protein from Schistosoma mansoni. Molecular and Biochemical Parasitology 108: 101–108. doi: 10.1016/S0166-6851(00)00209-7
[19]  Mohamed MM, Shalaby KA, LoVerde PT, Karim AM (1998) Characterization of Sm20.8, a member of a family of schistosome tegumental antigens. Mol Biochem Parasitol 96: 15–25. doi: 10.1016/S0166-6851(98)00088-7
[20]  Francis P, Bickle Q (1992) Cloning of a 21.7-kDa vaccine-dominant antigen gene of Schistosoma mansoni reveals an EF hand-like motif. Mol Biochem Parasitol 50: 215–224. doi: 10.1016/0166-6851(92)90218-9
[21]  Mei H, LoVerde PT (1995) Schistosoma mansoni: cloning the gene encoding glutathione peroxidase. Exp Parasitol 80: 319–322. doi: 10.1006/expr.1995.1038
[22]  Chalmers IW, McArdle AJ, Coulson RM, Wagner MA, Schmid R, et al. (2008) Developmentally regulated expression, alternative splicing and distinct sub-groupings in members of the Schistosoma mansoni venom allergen-like (SmVAL) gene family. BMC Genomics 9: 89. doi: 10.1186/1471-2164-9-89
[23]  Ram D, Grossman Z, Markovics A, Avivi A, Ziv E, et al. (1989) Rapid changes in the expression of a gene encoding a calcium-binding protein in Schistosoma mansoni. Mol Biochem Parasitol 34: 167–175. doi: 10.1016/0166-6851(89)90008-X
[24]  Kool J, Reubsaet L, Wesseldijk F, Maravilha RT, Pinkse MW, et al. (2007) Suction blister fluid as potential body fluid for biomarker proteins. Proteomics 7: 3638–3650. doi: 10.1002/pmic.200600938
[25]  Baechle D, Flad T, Cansier A, Steffen H, Schittek B, et al. (2006) Cathepsin D is present in human eccrine sweat and involved in the postsecretory processing of the antimicrobial peptide DCD-1L. J Biol Chem 281: 5406–5415. doi: 10.1074/jbc.M504670200
[26]  Wen D, Corina K, Chow EP, Miller S, Janmey PA, et al. (1996) The plasma and cytoplasmic forms of human gelsolin differ in disulfide structure. Biochemistry 35: 9700–9709. doi: 10.1021/bi960920n
[27]  Han ED, MacFarlane RC, Mulligan AN, Scafidi J, Davis AE, 3rd (2002) Increased vascular permeability in C1 inhibitor-deficient mice mediated by the bradykinin type 2 receptor. J Clin Invest 109: 1057–1063. doi: 10.1172/JCI14211
[28]  Koch PJ, Walsh MJ, Schmelz M, Goldschmidt MD, Zimbelmann R, et al. (1990) Identification of desmoglein, a constitutive desmosomal glycoprotein, as a member of the cadherin family of cell adhesion molecules. Eur J Cell Biol 53: 1–12.
[29]  Huang CM, Elmets CA, van Kampen KR, Desilva TS, Barnes S, et al. (2005) Prospective highlights of functional skin proteomics. Mass Spectrom Rev 24: 647–660. doi: 10.1002/mas.20037
[30]  Carlen LM, Sanchez F, Bergman AC, Becker S, Hirschberg D, et al. (2005) Proteome Analysis of Skin Distinguishes Acute Guttate from Chronic Plaque Psoriasis. J Invest Dermatol 124: 63–69. doi: 10.1111/j.0022-202X.2004.23501.x
[31]  McKerrow JH, Pino-Heiss S, Lindquist R, Werb Z (1985) Purification and characterization of an elastinolytic proteinase secreted by cercariae of Schistosoma mansoni. J Biol Chem 260: 3703–3707.
[32]  Jenkins SJ, Hewitson JP, Jenkins GR, Mountford AP (2005) Modulation of the host's immune response by schistosome larvae. Parasite Immunol 27: 385–393. doi: 10.1111/j.1365-3024.2005.00789.x
[33]  Ramaswamy K, He YX, Salafsky B (1997) ICAM-1 and iNOS expression increased in the skin of mice after vaccination with gamma-irradiated cercariae of Schistosoma mansoni. Exp Parasitol 86: 118–132. doi: 10.1006/expr.1997.4178
[34]  Trottein F, Descamps L, Nutten S, Dehouck MP, Angeli V, et al. (1999) Schistosoma mansoni activates host microvascular endothelial cells to acquire an anti-inflammatory phenotype. Infect Immun 67: 3403–3409.
[35]  Aslam A, Quinn P, McIntosh RS, Shi J, Ghumra A, et al. (2008) Proteases from Schistosoma mansoni cercariae cleave IgE at solvent exposed interdomain regions. Molelcular Immonology 45: 567–574. doi: 10.1016/j.molimm.2007.05.021
[36]  Dresden MH, Edin EM (1975) Schistosoma mansoni: Calcium content of cercariae and its effects on protease activity in vitro. The Journal of Parasitology 61: 398–402.
[37]  Trottein F, Kieny MP, Verwaerde C, Torpier G, Pierce RJ, et al. (1990) Molecular cloning and tissue distribution of a 26-kilodalton Schistosoma mansoni glutathione S-transferase. Mol Biochem Parasitol 41: 35–44. doi: 10.1016/0166-6851(90)90094-3
[38]  Kwatia MA, Botkin DJ, Williams DL (2000) Molecular and enzymatic characterization of Schistosoma mansoni thioredoxin peroxidase. J Parasitol 86: 908–915. doi: 10.1645/0022-3395(2000)086[0908:MAECOS]2.0.CO;2
[39]  Jankovic D, Aslund L, Oswald IP, Caspar P, Champion C, et al. (1996) Calpain is the target antigen of a Th1 clone that transfers protective immunity against Schistosoma mansoni. J Immunol 157: 806–814.
[40]  Andresen K, Tom TD, Strand M (1991) Characterization of cDNA clones encoding a novel calcium-activated neutral proteinase from Schistosoma mansoni. J Biol Chem Aug 15;266(23): 15085–90Click here to read 266: 15085–15090.
[41]  Boccellino M, Giuberti G, Quagliuolo L, Marra M, D'Alessandro AM, et al. (2004) Apoptosis induced by interferon-alpha and antagonized by EGF is regulated by caspase-3-mediated cleavage of gelsolin in human epidermoid cancer cells. J Cell Physiol 201: 71–83. doi: 10.1002/jcp.20058
[42]  Chen L, Rao KV, He YX, Ramaswamy K (2002) Skin-stage schistosomula of Schistosoma mansoni produce an apoptosis-inducing factor that can cause apoptosis of T cells. J Biol Chem 277: 34329–34335. doi: 10.1074/jbc.M201344200
[43]  Fishelson Z (1989) Complement and parasitic trematodes. Parasitol Today 5: 19–25. doi: 10.1016/0169-4758(89)90218-4
[44]  Dias Da Silva W, Kasatchkine MD (1980) Schistosoma mansoni: activation of the alternative pathway of human complement by schistosomula. Exp Parasitol 50: 278–286. doi: 10.1016/0014-4894(80)90029-6
[45]  Braschi S, Borges WC, Wilson RA (2006) Proteomic analysis of the schistosome tegument and its surface membranes. Mem Inst Oswaldo Cruz 101: Suppl 1205–212. doi: 10.1590/S0074-02762006000900032
[46]  Samuelson JC, Caulfield JP (1986) Cercarial glycocalyx of Schistosoma mansoni activates human complement. Infect Immun 51: 181–186.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133