全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

State–Space Forecasting of Schistosoma haematobium Time-Series in Niono, Mali

DOI: 10.1371/journal.pntd.0000276

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with infectious diseases. The incidence of Schistosoma sp.—which are neglected tropical diseases exposing and infecting more than 500 and 200 million individuals in 77 countries, respectively—is rising because of 1) numerous irrigation and hydro-electric projects, 2) steady shifts from nomadic to sedentary existence, and 3) ineffective control programs. Notwithstanding the colossal scope of these parasitic infections, less than 0.5% of Schistosoma sp. investigations have attempted to predict their spatial and or temporal distributions. Undoubtedly, public health programs in developing countries could benefit from parsimonious forecasting and early warning systems to enhance management of these parasitic diseases. Methodology/Principal Findings In this longitudinal retrospective (01/1996–06/2004) investigation, the Schistosoma haematobium time-series for the district of Niono, Mali, was fitted with general-purpose exponential smoothing methods to generate contemporaneous on-line forecasts. These methods, which are encapsulated within a state–space framework, accommodate seasonal and inter-annual time-series fluctuations. Mean absolute percentage error values were circa 25% for 1- to 5-month horizon forecasts. Conclusions/Significance The exponential smoothing state–space framework employed herein produced reasonably accurate forecasts for this time-series, which reflects the incidence of S. haematobium–induced terminal hematuria. It obliquely captured prior non-linear interactions between disease dynamics and exogenous covariates (e.g., climate, irrigation, and public health interventions), thus obviating the need for more complex forecasting methods in the district of Niono, Mali. Therefore, this framework could assist with managing and assessing S. haematobium transmission and intervention impact, respectively, in this district and potentially elsewhere in the Sahel.

References

[1]  Strickland GT, Ramirez BL (2000) Schistosomiasis. In: Strickland GT, editor. Hunter's Tropical Medicine and Emerging Infectious Diseases. 118. Philadelphia: W.B. Saunders Company, 8th edition. pp. 804–832.
[2]  WHO (1985) Technical report series. 728: 17–18.
[3]  Brinkmann UK, Werler C, Traoré M, Doumbia S, Diarra A (1988) Experiences with mass chemotherapy in the control of schistosomiasis in Mali. Tropical Medicine and Parasitology 39(2): 167–174.
[4]  Traore M (1996) Requirements for sustainable schistosomiasis control. World health forum 17(2): 184–186.
[5]  Fenwick A, Rollinson D, Southgate V (2006) Implementation of human schistosomiasis control: Challenges and prospects. Advances in Parasitology 61: 567–622. doi: 10.1016/S0065-308X(05)61013-5
[6]  Garba A, Touré S, Dembelé R, Bosque-Oliva E, Fenwick A (2006) Implementation of national schistosomiasis control programmes in West Africa. Trends in Parasitology 22(7): 322–326. doi: 10.1016/j.pt.2006.04.007
[7]  Southgate VR, Rollinson D, Tchuem Tchuenté LA, Hagan P (2005) Towards control of schistosomiasis in sub-Saharan Africa. Journal of Helminthology 79(3): 181–185. doi: 10.1079/JOH2005307
[8]  Coulibaly G, Diallo M, Madsen H, Dabo A, Traoré M, et al. (2004) Comparison of schistosome transmission in a single- and double-cropped area in the rice irrigation scheme, ‘Office du Niger’, Mali. Acta Tropica 19: 15–25. doi: 10.1016/j.actatropica.2004.02.008
[9]  Véra C, Jourdane J, Sellin B, Combes C (1990) Genetic variability in the compatibility between Schistosoma haematobium and its potential vectors in Niger. Epidemiological implications. Tropical Medicine and Parasitology 41(2): 143–148.
[10]  Moreau JP, Boudin C, Trotobas J, Roux J (1980) Distribution of schistosomiasis in French speaking countries of West Africa. Medecine Tropicale 40(1): 23–30.
[11]  Medina DC, Findley SE, Guindo B, Doumbia S (2007) Forecasting non-stationary diarrhea, acute respiratory infection, and malaria time-series in Niono, Mali. PLoS ONE 2: e1181. doi:10.1371/journal.pone.0001181. doi: 10.1371/journal.pone.0001181
[12]  Traore M, Traore HA, Kardorff R, Diarra A, Landoure A, et al. (1998) The public health significance of urinary schistosomiasis as a cause of morbidity in two districts in Mali. American Journal of Tropical Medicine and Hygiene 59(3): 407–413.
[13]  Kéita AD, Sangho H, Sacko M, Diarra Z, Simaga SY, et al. (2005) Prevalence of schistomasiasis lesions detected by ultrasonography in children in Molodo, Mali. Gastroentérologie Clinique et Biologique 29(6–7): 652–655. doi: 10.1016/s0399-8320(05)82151-7
[14]  Dabo A, Sow MY, Sangaré L, Maiga I, Keita A, et al. (2003) Transmission of schistosomiasis in an urban population and prevalence of intestinal helminthiasis in Bamako, Mali. Bulletin Société de pathologie exotique 96(3): 187–190.
[15]  Sangho H, Dabo A, Coulibaly H, Doumbo O (2002) Prevalence and perception of schistosomiasis in a periurban school of Bamako in Mali. Bulletin Société de pathologie exotique 95(4): 292–294.
[16]  Sai XY, Zhang ZY, Xu DZ, Yan YP, Li LS, et al. (2004) Application of “time series analysis” in the prediction of schistosomiasis prevalence in areas of “breaking dikes or opening sluice for waterstore” in Dongting Lake areas, China. Zhonghua Liu Xing Bing Xue Za Zhi 25(10): 863–866.
[17]  Hammad TA, Abdel-Wahab MF, DeClaris N, El-Sahly A, El-Kady N, et al. (1996) Comparative evaluation of the use of artificial neural networks for modelling the epidemiology of schistosomiasis mansoni. Transactions of the Royal Society of Tropical Medicine and Hygiene 90(4): 372–376. doi: 10.1016/S0035-9203(96)90509-X
[18]  Yang GJ, Gemperli A, Vounatsou P, Tanner M, Zhou XN, et al. (2006) A growing degree-days based time-series analysis for prediction of Schistosoma japonicum transmission in Jiangsu province, China. American Journal of Tropical Medicine and Hygiene 75(3): 549–555.
[19]  USAID (2004) Country health report: Mali.
[20]  Division des Services Socio-Sanitaires (1996–2004) Disease statistics for the district of Niono, Mali. These data were retrieved at the district hospital of Niono. These data may also obtain at individual CSCOM facilities and or in the Segou Region. In recent years, these data began appearing in electronic format at the Direction Nationale de Santé (DNS) in Bamako, Mali.
[21]  Holt CC (1957) Forecasting seasonals and trends by exponentially weighted moving averages. In ONR Research Memorandum 52, Carnegie Institute of Technology.
[22]  Winters PR (1960) Forecasting sales by exponentially weighted moving averages. Management Sciences 6: 324–342. doi: 10.1287/mnsc.6.3.324
[23]  Pegels CC (1969) Exponential smoothing: some new variations. Management Science 15(5): 311–315. doi: 10.1287/mnsc.15.5.311
[24]  Gardner ES Jr (1985) Exponential smoothing: the state of the art. Journal of Forecasting 4: 1–28. doi: 10.1002/for.3980040103
[25]  Gardner ES Jr, MacKenzie E (1985) Forecasting trends in time series. Management Science 31(10): 1237–1246. doi: 10.1287/mnsc.31.10.1237
[26]  Ord JK, Koehler AB, Snyder RD (1997) Estimation and prediction for a class of dynamic nonlinear statistical models. Journal of the American Statistical Association 92: 1621–1629. doi: 10.1080/01621459.1997.10473684
[27]  Hyndman RJ, Koehler AB, Snyder RD, Grose S (2002) A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting 18(3): 439–454. doi: 10.1016/s0169-2070(01)00110-8
[28]  Taylor JW (2003) Exponential smoothing with a damped multiplicative trend. International journal of Forecasting 19: 715–725. doi: 10.1016/s0169-2070(03)00003-7
[29]  Hyndman RJ, Koehler AB, Ord JK, Snyder RD (2005) Prediction intervals for exponential smoothing using two new classes of state space models. Journal of Forecasting 24: 17–37. doi: 10.1002/for.938
[30]  R Development Core Team (2004) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
[31]  Hyndman RJ, Khandakar Y (2007) Automatic time series forecasting: the forecast package for R. http://www.buseco.monash.edu.au/depts/eb?s/pubs/wpapers, Accessed on 08/2007.
[32]  Makridakis S, Hibon M (2000) The M3-Competition: results, conclusions and implications. International Journal of Forecasting 16: 451–476. doi: 10.1016/s0169-2070(00)00057-1
[33]  Politis DN (2003) The impact of bootstrap methods on time series analysis. Statistical Science 18(2): 219–230. doi: 10.1214/ss/1063994977
[34]  Beck-W?rner C, Raso G, Vounatsou P, N'Goran EK, Rigo G, et al. (2007) Bayesian spatial risk prediction of Schistosoma mansoni infection in western C?te d'Ivoire using a remotely-sensed digital elevation model. American Journal of Tropical Medicine and Hygiene 76(5): 956–963.
[35]  Teklehaimanot HD, Schwartz J, Teklehaimanot A, Lipsitch M (2004) Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia II. Weather-based prediction systems perform comparably to early detection systems in identifying times for interventions. Malaria Journal 3: 44. doi: 10.1186/1475-2875-3-44
[36]  Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, et al. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439(7076): 576–579. doi: 10.1038/nature04503
[37]  Chaves LF, Pascual M (2006) Climate cycles and forecasts of cutaneous leishmaniasis, a non-stationary vector-borne disease. PLoS Med 3: e295. doi:10.1371/journal.pmed.0030295. doi: 10.1371/journal.pmed.0030295
[38]  Chaves LF, Pascual M (2007) Comparing models for early warning systems of neglected tropical diseases. PLoS Negl Trop Dis 1: e33. doi:10.1371/journal.pntd.0000033. doi: 10.1371/journal.pntd.0000033
[39]  Watts DJ, Muhamad R, Medina DC, Dodds PS (2005) Multiscale, resurgent epidemics in a hierarchical metapopulation model. PNAS 102(32): 11157–11162. doi: 10.1073/pnas.0501226102
[40]  Ferrari MJ, Grais RF, Bharti N, Conlan AJ, Bj?rnstad ON, Wolfson LJ, Guerin PJ, Djibo A, Grenfell BT (2008) The dynamics of measles in sub-Saharan Africa. Nature 451(7179): 679–684. doi: 10.1038/nature06509
[41]  Gijbels I, Pope A, Wand MP (1999) Understanding exponential smoothing via kernel regression. Journal of the Royal Statistical Society 61(Series B): 39–50. doi: 10.1111/1467-9868.00161

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133