全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Schistosoma mansoni Stomatin Like Protein-2 Is Located in the Tegument and Induces Partial Protection against Challenge Infection

DOI: 10.1371/journal.pntd.0000597

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Schistosomiasis affects more than 200 million individuals worldwide, with a further 650 million living at risk of infection, constituting a severe health problem in developing countries. Even though an effective treatment exists, it does not prevent re-infection, and the development of an effective vaccine still remains the most desirable means of control for this disease. Methodology/Principal Findings Herein, we report the cloning and characterization of a S. mansoni Stomatin-like protein 2 (SmStoLP-2). In silico analysis predicts three putative sites for palmitoylation (Cys11, Cys61 and Cys330), which could contribute to protein membrane association; and a putative mitochondrial targeting sequence, similar to that described for human Stomatin-like protein 2 (HuSLP-2). The protein was detected by Western blot with comparable levels in all stages across the parasite life cycle. Fractionation by differential centrifugation of schistosome tegument suggested that SmStoLP-2 displays a dual targeting to the tegument membranes and mitochondria; additionally, immunolocalization experiments confirm its localization in the tegument of the adult worms and, more importantly, in 7-day-old schistosomula. Analysis of the antibody isotype profile to rSmStoLP-2 in the sera of patients living in endemic areas for schistosomiasis revealed that IgG1, IgG2, IgG3 and IgA antibodies were predominant in sera of individuals resistant to reinfection as compared to those susceptible. Next, immunization of mice with rSmStoLP-2 engendered a 30%–32% reduction in adult worm burden. Protective immunity in mice was associated with specific anti-rSmStoLP-2 IgG1 and IgG2a antibodies and elevated production of IFN-γ and TNF-α, while no IL-4 production was detected, suggesting a Th1-predominant immune response. Conclusions/Significance Data presented here demonstrate that SmStoLP-2 is a novel tegument protein located in the host-parasite interface. It is recognized by different subclasses of antibodies in patients resistant and susceptible to reinfection and, based on the data from murine studies, shows protective potential against schistosomiasis. These results indicate that SmStoLP-2 could be useful in a combination vaccine.

References

[1]  WHO (2002) TDR Strategic Direction for Research: Schistosomiasis. Geneve: World Health Organization.
[2]  Boros DL (1989) Immunopathology of Schistosoma mansoni infection. Clin Microbiol Rev 2: 250–269.
[3]  Harder A (2002) Chemotherapeutic approaches to schistosomes: current knowledge and outlook. Parasitol Res 88: 395–397. doi: 10.1007/s00436-001-0588-x
[4]  Bergquist NR (1995) Schistosomiasis vaccine development: approaches and prospects. Mem Inst Oswaldo Cruz 90: 221–227. doi: 10.1590/S0074-02761995000200017
[5]  Ismail M, Botros S, Metwally A, William S, Farghally A, et al. (1999) Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villagers. Am J Trop Med Hyg 60: 932–935.
[6]  Bergquist NR (2002) Schistosomiasis: from risk assessment to control. Trends Parasitol 18: 309–314. doi: 10.1016/S1471-4922(02)02301-2
[7]  Hu W, Yan Q, Shen DK, Liu F, Zhu ZD, et al. (2003) Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat Genet 35: 139–147. doi: 10.1038/ng1236
[8]  Verjovski-Almeida S, DeMarco R, Martins EA, Guimaraes PE, Ojopi EP, et al. (2003) Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nat Genet 35: 148–157. doi: 10.1038/ng1237
[9]  Wang Y, Morrow JS (2000) Identification and characterization of human SLP-2, a novel homologue of stomatin (band 7.2b) present in erythrocytes and other tissues. J Biol Chem 275: 8062–8071. doi: 10.1074/jbc.275.11.8062
[10]  Foley M, Tilley L (1997) Quinoline antimalarials: mechanisms of action and resistance. Int J Parasitol 27: 231–240. doi: 10.1016/S0020-7519(96)00152-X
[11]  Hajek P, Chomyn A, Attardi G (2007) Identification of a novel mitochondrial complex containing mitofusin 2 and stomatin-like protein 2. J Biol Chem 282: 5670–5681. doi: 10.1074/jbc.M608168200
[12]  Morrow IC, Parton RG (2005) Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 6: 725–740. doi: 10.1111/j.1600-0854.2005.00318.x
[13]  Tavernarakis N, Driscoll M, Kyrpides NC (1999) The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem Sci 24: 425–427. doi: 10.1016/S0968-0004(99)01467-X
[14]  Zhang L, Ding F, Cao W, Liu Z, Liu W, et al. (2006) Stomatin-like protein 2 is overexpressed in cancer and involved in regulating cell growth and cell adhesion in human esophageal squamous cell carcinoma. Clin Cancer Res 12: 1639–1646. doi: 10.1158/1078-0432.CCR-05-1858
[15]  Cao WF, Zhang LY, Liu MB, Tang PZ, Liu ZH, et al. (2007) Prognostic significance of stomatin-like protein 2 overexpression in laryngeal squamous cell carcinoma: clinical, histologic, and immunohistochemistry analyses with tissue microarray. Hum Pathol 38: 747–752. doi: 10.1016/j.humpath.2006.11.004
[16]  Chelur DS, Ernstrom GG, Goodman MB, Yao CA, Chen L, et al. (2002) The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420: 669–673. doi: 10.1038/nature01205
[17]  Goodman MB, Ernstrom GG, Chelur DS, O'Hagan R, Yao CA, et al. (2002) MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415: 1039–1042. doi: 10.1038/4151039a
[18]  Huang M, Gu G, Ferguson EL, Chalfie M (1995) A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378: 292–295. doi: 10.1038/378292a0
[19]  Rajaram S, Sedensky MM, Morgan PG (1998) Unc-1: a stomatin homologue controls sensitivity to volatile anesthetics in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95: 8761–8766. doi: 10.1073/pnas.95.15.8761
[20]  Wetzel C, Hu J, Riethmacher D, Benckendorff A, Harder L, et al. (2007) A stomatin-domain protein essential for touch sensation in the mouse. Nature 445: 206–209. doi: 10.1038/nature05394
[21]  Zhang S, Arnadottir J, Keller C, Caldwell GA, Yao CA, et al. (2004) MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr Biol 14: 1888–1896. doi: 10.1016/j.cub.2004.10.030
[22]  Zhang Y, Ma C, Delohery T, Nasipak B, Foat BC, et al. (2002) Identification of genes expressed in C. elegans touch receptor neurons. Nature 418: 331–335. doi: 10.1038/nature00891
[23]  Kirchhof MG, Chau LA, Lemke CD, Vardhana S, Darlington PJ, et al. (2007) Stomatin-like Protein 2 Links Mitochondria to T-Cell Receptor Signalosomes at the Immunological Synapse and Enhances T-Cell Activation. Nature Precedings. Available: Accessed 2007 Sep 21.
[24]  Kirchhof MG, Chau LA, Lemke CD, Vardhana S, Darlington PJ, et al. (2008) Modulation of T cell activation by stomatin-like protein 2. J Immunol 181: 1927–1936.
[25]  Correa-Oliveira R, Pearce EJ, Oliveira GC, Golgher DB, Katz N, et al. (1989) The human immune response to defined immunogens of Schistosoma mansoni: elevated antibody levels to paramyosin in stool-negative individuals from two endemic areas in Brazil. Trans R Soc Trop Med Hyg 83: 798–804. doi: 10.1016/0035-9203(89)90334-9
[26]  Bethony J, Williams JT, Kloos H, Blangero J, Alves-Fraga L, et al. (2001) Exposure to Schistosoma mansoni infection in a rural area in Brazil. II: household risk factors. Trop Med Int Health 6: 136–145. doi: 10.1046/j.1365-3156.2001.00685.x
[27]  Gazzinelli A, Bethony J, Fraga LA, LoVerde PT, Correa-Oliveira R, et al. (2001) Exposure to Schistosoma mansoni infection in a rural area of Brazil. I: water contact. Trop Med Int Health 6: 126–135. doi: 10.1046/j.1365-3156.2001.00684.x
[28]  Kloos H, Rodrigues JC, Pereira WR, Velasquez-Melendez G, Loverde P, et al. (2006) Combined methods for the study of water contact behavior in a rural schistosomiasis-endemic area in Brazil. Acta Trop 97: 31–41. doi: 10.1016/j.actatropica.2005.08.006
[29]  Zhou F, Xue Y, Yao X, Xu Y (2006) CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics 22: 894–896. doi: 10.1093/bioinformatics/btl013
[30]  Braschi S, Curwen RS, Ashton PD, Verjovski-Almeida S, Wilson A (2006) The tegument surface membranes of the human blood parasite Schistosoma mansoni: a proteomic analysis after differential extraction. Proteomics 6: 1471–1482. doi: 10.1002/pmic.200500368
[31]  Roberts SM, MacGregor AN, Vojvodic M, Wells E, Crabtree JE, et al. (1983) Tegument surface membranes of adult Schistosoma mansoni: development of a method for their isolation. Mol Biochem Parasitol 9: 105–127. doi: 10.1016/0166-6851(83)90104-4
[32]  Cardoso FC, Pacifico RN, Mortara RA, Oliveira SC (2006) Human antibody responses of patients living in endemic areas for schistosomiasis to the tegumental protein Sm29 identified through genomic studies. Clin Exp Immunol 144: 382–391. doi: 10.1111/j.1365-2249.2006.03081.x
[33]  Brito CF, Fonseca CT, Goes AM, Azevedo V, Simpson AJ, et al. (2000) Human IgG1 and IgG3 recognition of Schistosoma mansoni 14kDa fatty acid-binding recombinant protein. Parasite Immunol 22: 41–48.
[34]  Lopes DO, Paiva LF, Martins MA, Cardoso FC, Rajao MA, et al. (2009) Sm21.6 a novel EF-hand family protein member located on the surface of Schistosoma mansoni adult worm that failed to induce protection against challenge infection but reduced liver pathology. Vaccine 27: 4127–4135. doi: 10.1016/j.vaccine.2009.04.068
[35]  Goud GN, Bottazzi ME, Zhan B, Mendez S, Deumic V, et al. (2005) Expression of the Necator americanus hookworm larval antigen Na-ASP-2 in Pichia pastoris and purification of the recombinant protein for use in human clinical trials. Vaccine 23: 4754–4764. doi: 10.1016/j.vaccine.2005.04.040
[36]  Cardoso FC, Macedo GC, Gava E, Kitten GT, Mati VL, et al. (2008) Schistosoma mansoni Tegument Protein Sm29 Is Able to Induce a Th1-Type of Immune Response and Protection against Parasite Infection. PLoS Negl Trop Dis 2: e308. doi: 10.1371/journal.pntd.0000308
[37]  Cardoso LS, Araujo MI, Goes AM, Pacifico LG, Oliveira RR, et al. (2007) Polymyxin B as inhibitor of LPS contamination of Schistosoma mansoni recombinant proteins in human cytokine analysis. Microb Cell Fact 6: 1. doi: 10.1186/1475-2859-6-1
[38]  Don TA, Bethony JM, Loukas A (2008) Saposin-like proteins are expressed in the gastrodermis of Schistosoma mansoni and are immunogenic in natural infections. Int J Infect Dis 12: e39–47. doi: 10.1016/j.ijid.2007.10.007
[39]  Snyers L, Umlauf E, Prohaska R (1999) Cysteine 29 is the major palmitoylation site on stomatin. FEBS Lett 449: 101–104. doi: 10.1016/S0014-5793(99)00417-2
[40]  Hiller NL, Akompong T, Morrow JS, Holder AA, Haldar K (2003) Identification of a stomatin orthologue in vacuoles induced in human erythrocytes by malaria parasites. A role for microbial raft proteins in apicomplexan vacuole biogenesis. J Biol Chem 278: 48413–48421. doi: 10.1074/jbc.M307266200
[41]  Rivera-Milla E, Stuermer CA, Malaga-Trillo E (2006) Ancient origin of reggie (flotillin), reggie-like, and other lipid-raft proteins: convergent evolution of the SPFH domain. Cell Mol Life Sci 63: 343–357. doi: 10.1007/s00018-005-5434-3
[42]  Coulson PS (1997) The radiation-attenuated vaccine against schistosomes in animal models: paradigm for a human vaccine? Adv Parasitol 39: 271–336. doi: 10.1016/S0065-308X(08)60048-2
[43]  Skelly PJ, Alan Wilson R (2006) Making sense of the schistosome surface. Adv Parasitol 63: 185–284. doi: 10.1016/S0065-308X(06)63003-0
[44]  Al-Sherbiny M, Osman A, Barakat R, El Morshedy H, Bergquist R, et al. (2003) In vitro cellular and humoral responses to Schistosoma mansoni vaccine candidate antigens. Acta Trop 88: 117–130. doi: 10.1016/S0001-706X(03)00195-5
[45]  Tran MH, Pearson MS, Bethony JM, Smyth DJ, Jones MK, et al. (2006) Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nat Med 12: 835–840. doi: 10.1038/nm1430
[46]  Auriault C, Gras-Masse H, Pierce RJ, Butterworth AE, Wolowczuk I, et al. (1990) Antibody response of Schistosoma mansoni-infected human subjects to the recombinant P28 glutathione-S-transferase and to synthetic peptides. J Clin Microbiol 28: 1918–1924.
[47]  Grzych JM, Grezel D, Xu CB, Neyrinck JL, Capron M, et al. (1993) IgA antibodies to a protective antigen in human Schistosomiasis mansoni. J Immunol 150: 527–535.
[48]  Wynn TA, Hoffmann KF (2000) Defining a schistosomiasis vaccination strategy - is it really Th1 versus Th2? Parasitol Today 16: 497–501. doi: 10.1016/S0169-4758(00)01788-9
[49]  Garcia TC, Fonseca CT, Pacifico LG, Duraes Fdo V, Marinho FA, et al. (2008) Peptides containing T cell epitopes, derived from Sm14, but not from paramyosin, induce a Th1 type of immune response, reduction in liver pathology and partial protection against Schistosoma mansoni infection in mice. Acta Trop 106: 162–167. doi: 10.1016/j.actatropica.2008.03.003
[50]  Jankovic D, Aslund L, Oswald IP, Caspar P, Champion C, et al. (1996) Calpain is the target antigen of a Th1 clone that transfers protective immunity against Schistosoma mansoni. J Immunol 157: 806–814.
[51]  Li GF, Wang Y, Zhang ZS, Wang XJ, Ji MJ, et al. (2005) Identification of immunodominant Th1-type T cell epitopes from Schistosoma japonicum 28 kDa glutathione-S-transferase, a vaccine candidate. Acta Biochim Biophys Sin (Shanghai) 37: 751–758. doi: 10.1111/j.1745-7270.2005.00111.x
[52]  Mountford AP, Anderson S, Wilson RA (1996) Induction of Th1 cell-mediated protective immunity to Schistosoma mansoni by co-administration of larval antigens and IL-12 as an adjuvant. J Immunol 156: 4739–4745.
[53]  Zhang R, Yoshida A, Kumagai T, Kawaguchi H, Maruyama H, et al. (2001) Vaccination with calpain induces a Th1-biased protective immune response against Schistosoma japonicum. Infect Immun 69: 386–391. doi: 10.1128/IAI.69.1.386-391.2001
[54]  Hewitson JP, Hamblin PA, Mountford AP (2005) Immunity induced by the radiation-attenuated schistosome vaccine. Parasite Immunol 27: 271–280. doi: 10.1111/j.1365-3024.2005.00764.x
[55]  Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, et al. (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 103: 17079–17086. doi: 10.1073/pnas.0607465103

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133