全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Crystal Structures of TbCatB and Rhodesain, Potential Chemotherapeutic Targets and Major Cysteine Proteases of Trypanosoma brucei

DOI: 10.1371/journal.pntd.0000701

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Trypanosoma brucei is the etiological agent of Human African Trypanosomiasis, an endemic parasitic disease of sub-Saharan Africa. TbCatB and rhodesain are the sole Clan CA papain-like cysteine proteases produced by the parasite during infection of the mammalian host and are implicated in the progression of disease. Of considerable interest is the exploration of these two enzymes as targets for cysteine protease inhibitors that are effective against T. brucei. Methods and Findings We have determined, by X-ray crystallography, the first reported structure of TbCatB in complex with the cathepsin B selective inhibitor CA074. In addition we report the structure of rhodesain in complex with the vinyl-sulfone K11002. Conclusions The mature domain of our TbCat?CA074 structure contains unique features for a cathepsin B-like enzyme including an elongated N-terminus extending 16 residues past the predicted maturation cleavage site. N-terminal Edman sequencing reveals an even longer extension than is observed amongst the ordered portions of the crystal structure. The TbCat?CA074 structure confirms that the occluding loop, which is an essential part of the substrate-binding site, creates a larger prime side pocket in the active site cleft than is found in mammalian cathepsin B-small molecule structures. Our data further highlight enhanced flexibility in the occluding loop main chain and structural deviations from mammalian cathepsin B enzymes that may affect activity and inhibitor design. Comparisons with the rhodesain?K11002 structure highlight key differences that may impact the design of cysteine protease inhibitors as anti-trypanosomal drugs.

References

[1]  Cox FE (2004) History of sleeping sickness (African trypanosomiasis). Infect Dis Clin North Am 18: 231–245. doi: 10.1016/j.idc.2004.01.004
[2]  Jannin J, Cattand P (2004) Treatment and control of human African trypanosomiasis. Curr Opin Infect Dis 17: 565–571. doi: 10.1097/00001432-200412000-00009
[3]  Kaare MT, Picozzi K, Mlengeya T, Fevre EM, Mellau LS, et al. (2007) Sleeping sickness–a re-emerging disease in the Serengeti? Travel Med Infect Dis 5: 117–124. doi: 10.1016/j.tmaid.2006.01.014
[4]  Barrett MP, Boykin DW, Brun R, Tidwell RR (2007) Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. Br J Pharmacol 152: 1155–1171. doi: 10.1038/sj.bjp.0707354
[5]  Burri C, Brun R (2003) Eflornithine for the treatment of human African trypanosomiasis. Parasitol Res 90: Supp 1S49–52. doi: 10.1007/s00436-002-0766-5
[6]  Pepin J, Milord F (1991) African trypanosomiasis and drug-induced encephalopathy: risk factors and pathogenesis. Trans R Soc Trop Med Hyg 85: 222–224. doi: 10.1016/0035-9203(91)90032-T
[7]  Pepin J, Milord F, Khonde AN, Niyonsenga T, Loko L, et al. (1995) Risk factors for encephalopathy and mortality during melarsoprol treatment of Trypanosoma brucei gambiense sleeping sickness. Trans R Soc Trop Med Hyg 89: 92–97. doi: 10.1016/0035-9203(95)90673-8
[8]  Scena MR (1988) Melarsoprol toxicity in the treatment of human African trypanosomiasis. Ten cases treated with dimercaprol. Cent Afr J Med 34: 264–268.
[9]  Priotto G, Kasparian S, Mutombo W, Ngouama D, Ghorashian S, et al. (2009) Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet 374: 56–64. doi: 10.1016/S0140-6736(09)61117-X
[10]  Priotto G, Kasparian S, Ngouama D, Ghorashian S, Arnold U, et al. (2007) Nifurtimox-eflornithine combination therapy for second-stage Trypanosoma brucei gambiense sleeping sickness: a randomized clinical trial in Congo. Clin Infect Dis 45: 1435–1442. doi: 10.1086/522982
[11]  Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120: 1–21. doi: 10.1016/S0166-6851(01)00438-8
[12]  Abdulla MH, Lim KC, Sajid M, McKerrow JH, Caffrey CR (2007) Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor. PLoS Med 4: e14. doi: 10.1371/journal.pmed.0040014
[13]  Dvorak J, Mashiyama ST, Braschi S, Sajid M, Knudsen GM, et al. (2008) Differential use of protease families for invasion by schistosome cercariae. Biochimie 90: 345–358. doi: 10.1016/j.biochi.2007.08.013
[14]  Doyle PS, Zhou YM, Engel JC, McKerrow JH (2007) A cysteine protease inhibitor cures Chagas' disease in an immunodeficient-mouse model of infection. Antimicrob Agents Chemother 51: 3932–3939. doi: 10.1128/AAC.00436-07
[15]  McKerrow JH, Engel JC, Caffrey CR (1999) Cysteine protease inhibitors as chemotherapy for parasitic infections. Bioorg Med Chem 7: 639–644. doi: 10.1016/S0968-0896(99)00008-5
[16]  Abdulla MH, O'Brien T, Mackey ZB, Sajid M, Grab DJ, et al. (2008) RNA Interference of Trypanosoma brucei Cathepsin B and L Affects Disease Progression in a Mouse Model. PLoS Negl Trop Dis 2: e298. doi: 10.1371/journal.pntd.0000298
[17]  Nikolskaia OV, de ALAP, Kim YV, Lonsdale-Eccles JD, Fukuma T, et al. (2006) Blood-brain barrier traversal by African trypanosomes requires calcium signaling induced by parasite cysteine protease. J Clin Invest 116: 2739–2747. doi: 10.1172/JCI27798
[18]  Mackey ZB, O'Brien TC, Greenbaum DC, Blank RB, McKerrow JH (2004) A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J Biol Chem 279: 48426–48433. doi: 10.1074/jbc.M402470200
[19]  Scory S, Stierhof YD, Caffrey CR, Steverding D (2007) The cysteine proteinase inhibitor Z-Phe-Ala-CHN2 alters cell morphology and cell division activity of Trypanosoma brucei bloodstream forms in vivo. Kinetoplastid Biol Dis 6: 2. doi: 10.1186/1475-9292-6-2
[20]  McGrath ME (1999) The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct 28: 181–204. doi: 10.1146/annurev.biophys.28.1.181
[21]  Illy C, Quraishi O, Wang J, Purisima E, Vernet T, et al. (1997) Role of the occluding loop in cathepsin B activity. J Biol Chem 272: 1197–1202. doi: 10.1074/jbc.272.2.1197
[22]  O'Brien TC, Mackey ZB, Fetter RD, Choe Y, O'Donoghue AJ, et al. (2008) A parasite cysteine protease is key to host protein degradation and iron acquisition. J Biol Chem 283: 28934–28943. doi: 10.1074/jbc.M805824200
[23]  Brak K, Kerr ID, Barrett KT, Fuchi N, Debnath M, et al. (2010) Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for chagas disease chemotherapy. J Med Chem 53: 1763–1773. doi: 10.1021/jm901633v
[24]  Bryant C, Kerr ID, Debnath M, Ang KK, Ratnam J, et al. (2009) Novel non-peptidic vinylsulfones targeting the S2 and S3 subsites of parasite cysteine proteases. Bioorg Med Chem Lett 19: 6218–6221. doi: 10.1016/j.bmcl.2009.08.098
[25]  Zimmerman M, Ashe B, Yurewicz EC, Patel G (1977) Sensitive assays for trypsin, elastase, and chymotrypsin using new fluorogenic substrates. Anal Biochem 78: 47–51. doi: 10.1016/0003-2697(77)90006-9
[26]  Zimmerman M, Yurewicz E, Patel G (1976) A new fluorogenic substrate for chymotrypsin. Anal Biochem 70: 258–262. doi: 10.1016/S0003-2697(76)80066-8
[27]  Cohen AE, Ellis PJ, Miller MD, Deacon AM, Phizackerley RP (2002) An automated system to mount cryo-cooled protein crystals on a synchrotron beamline, using compact sample cassetes and a small-scale robot. J Appl Cryst 35: 720–726. doi: 10.1107/s0021889802016709
[28]  Caffrey CR, Hansell E, Lucas KD, Brinen LS, Alvarez Hernandez A, et al. (2001) Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 118: 61–73. doi: 10.1016/S0166-6851(01)00368-1
[29]  Leslie AGW (1992) Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ES-EAMCB Newsletter on Protein Crystallography 26:
[30]  Evans PR (1997) SCALA. Joint CCP4 and ESF-EAMCB Newsletter on protein Crystallography 33: 22–24.
[31]  Vagin A, Teplyakov A (1997) MOLREP: an Automated Program for Molecular Replacement. J Appl Cryst 30: 1022–1025. doi: 10.1107/s0021889897006766
[32]  Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, et al. (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci Chapter 2: Unit 2 9.
[33]  McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, et al. (2007) Phaser crystallographic software. J Appl Crystallogr 40: 658–674. doi: 10.1107/S0021889807021206
[34]  Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240–255. doi: 10.1107/S0907444996012255
[35]  Emsley P, Cowtan K (2004) Coot: Model-Building Tools for Molecular Graphics. Acta Cryst Section D - Biological Crystallography 60: 2126–2132. doi: 10.1107/s0907444904019158
[36]  Kerr ID, Lee JH, Faraday CJ, Marion R, Rickert M, et al. (2009) Vinyl sulfones as antiparasitic agents: a structural basis for drug design. J Biol Chem. In press. doi: 10.1074/jbc.m109.014340
[37]  Hasnain S, Hirama T, Huber CP, Mason P, Mort JS (1993) Characterization of cathepsin B specificity by site-directed mutagenesis. Importance of Glu245 in the S2-P2 specificity for arginine and its role in transition state stabilization. J Biol Chem 268: 235–240.
[38]  Hasnain S, Huber CP, Muir A, Rowan AD, Mort JS (1992) Investigation of structure function relationships in cathepsin B. Biol Chem Hoppe Seyler 373: 413–418. doi: 10.1515/bchm3.1992.373.2.413
[39]  Mallari JP, Shelat AA, Obrien T, Caffrey CR, Kosinski A, et al. (2008) Development of potent purine-derived nitrile inhibitors of the trypanosomal protease TbcatB. J Med Chem 51: 545–552. doi: 10.1021/jm070760l
[40]  Mallari JP, Shelat AA, Kosinski A, Caffrey CR, Connelly M, et al. (2009) Structure-guided development of selective TbcatB inhibitors. J Med Chem 52: 6489–6493. doi: 10.1021/jm900908p
[41]  Mallari JP, Shelat A, Kosinski A, Caffrey CR, Connelly M, et al. (2008) Discovery of trypanocidal thiosemicarbazone inhibitors of rhodesain and TbcatB. Bioorg Med Chem Lett 18: 2883–2885. doi: 10.1016/j.bmcl.2008.03.083
[42]  Nagler DK, Storer AC, Portaro FC, Carmona E, Juliano L, et al. (1997) Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts. Biochemistry 36: 12608–12615. doi: 10.1021/bi971264+
[43]  Shenai BR, Sijwali PS, Singh A, Rosenthal PJ (2000) Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem 275: 29000–29010. doi: 10.1074/jbc.M004459200
[44]  Sijwali PS, Shenai BR, Gut J, Singh A, Rosenthal PJ (2001) Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3. Biochem J 360: 481–489. doi: 10.1042/0264-6021:3600481
[45]  DeLano WL (2002) The PyMOL Molecular Graphics System. Carlos San, CA, USA: DeLano Scientific.
[46]  Davis IW, Murray LW, Richardson JS, Richardson DC (2004) MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 32: W615–619. doi: 10.1093/nar/gkh398

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133