全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Of Cattle, Sand Flies and Men: A Systematic Review of Risk Factor Analyses for South Asian Visceral Leishmaniasis and Implications for Elimination

DOI: 10.1371/journal.pntd.0000599

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Studies performed over the past decade have identified fairly consistent epidemiological patterns of risk factors for visceral leishmaniasis (VL) in the Indian subcontinent. Methods and Principal Findings To inform the current regional VL elimination effort and identify key gaps in knowledge, we performed a systematic review of the literature, with a special emphasis on data regarding the role of cattle because primary risk factor studies have yielded apparently contradictory results. Because humans form the sole infection reservoir, clustering of kala-azar cases is a prominent epidemiological feature, both at the household level and on a larger scale. Subclinical infection also tends to show clustering around kala-azar cases. Within villages, areas become saturated over a period of several years; kala-azar incidence then decreases while neighboring areas see increases. More recently, post kala-azar dermal leishmaniasis (PKDL) cases have followed kala-azar peaks. Mud walls, palpable dampness in houses, and peri-domestic vegetation may increase infection risk through enhanced density and prolonged survival of the sand fly vector. Bed net use, sleeping on a cot and indoor residual spraying are generally associated with decreased risk. Poor micronutrient status increases the risk of progression to kala-azar. The presence of cattle is associated with increased risk in some studies and decreased risk in others, reflecting the complexity of the effect of bovines on sand fly abundance, aggregation, feeding behavior and leishmanial infection rates. Poverty is an overarching theme, interacting with individual risk factors on multiple levels. Conclusions Carefully designed demonstration projects, taking into account the complex web of interconnected risk factors, are needed to provide direct proof of principle for elimination and to identify the most effective maintenance activities to prevent a rapid resurgence when interventions are scaled back. More effective, short-course treatment regimens for PKDL are urgently needed to enable the elimination initiative to succeed.

References

[1]  World Health Organization (2008) The Global Burden of Disease: 2004 update. http://www.who.int/healthinfo/global_bur?den_disease/2004_report_update/en/index.?html 12/10/2009.
[2]  Alvar J, Aparicio P, Aseffa A, den Boer M, Ca?avate C, et al. (2008) The Relationship between Leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21: 334–359. doi: 10.1128/CMR.00061-07
[3]  Jeronimo SMB, de Queiroz Sousa A, Pearson RD (2006) Leishmaniasis. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens and practice. Edinburgh, Scotland: Churchill Livingstone Elsevier. pp. 1095–1113.
[4]  Quinnell RJ, Courtenay O (2009) Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology 1–20. doi: 10.1017/s0031182009991156
[5]  Sen Gupta PC (1947) History of kala-azar in India. Indian Medical Gazette 82: 281–286.
[6]  Badaro R, Jones TC, Lorenco R, Cerf BJ, Sampaio D, et al. (1986) A prospective study of visceral leishmaniasis in an endemic area of Brazil. J Infect Dis 154: 639–649. doi: 10.1093/infdis/154.4.639
[7]  Bern C, Haque R, Chowdhury R, Ali M, Kurkjian KM, et al. (2007) The epidemiology of visceral leishmaniasis and asymptomatic leishmanial infection in a highly endemic Bangladeshi village. Am J Trop Med Hyg 76: 909–914.
[8]  Moral L, Rubio EM, Moya M (2002) A leishmanin skin test survey in the human population of l'Alacanti region (Spain): implications for the epidemiology of Leishmania infantum infection in southern Europe. Trans R Soc Trop Med Hyg 96: 129–132. doi: 10.1016/S0035-9203(02)90278-6
[9]  Bern C, Amann J, Haque R, Chowdhury R, Ali M, et al. (2006) Loss of leishmanin skin test antigen sensitivity and potency in a longitudinal study of visceral leishmaniasis in Bangladesh. Am J Trop Med Hyg 75: 744–748.
[10]  Nandy A, Neogy AB, Chowdhury AB (1987) Leishmanin test survey in an endemic village of Indian kala-azar near Calcutta. Ann Trop Med Parasitol 81: 693–699.
[11]  Zijlstra EE, el-Hassan AM (1993) Leishmanin and tuberculin sensitivity in leishmaniasis in the Sudan, with special reference to kala-azar. Trans R Soc Trop Med Hyg 87: 425–427. doi: 10.1016/0035-9203(93)90024-K
[12]  Ramesh V (1995) Post-kala-azar dermal leishmaniasis. Int J Dermatol 34: 85–91. doi: 10.1111/j.1365-4362.1995.tb03584.x
[13]  Addy M, Nandy A (1992) Ten years of kala-azar in west Bengal, Part I. Did post-kala-azar dermal leishmaniasis initiate the outbreak in 24-Parganas? Bull World Health Organ 70: 341–346.
[14]  Napier L, Smith R, Das-Gupta C, Mukerji S (1933) The infection of Phlebotomus argentipes from dermal leishmanial lesions. . Indian J Med Res 21: 173–177.
[15]  Bhattacharya SK, Sur D, Sinha PK, Karbwang J (2006) Elimination of leishmaniasis (kala-azar) from the Indian subcontinent is technically feasible & operationally achievable. Indian J Med Res 123: 195–196.
[16]  Bora D (1999) Epidemiology of visceral leishmaniasis in India. Natl Med J India 12: 62–68.
[17]  Bern C, Chowdhury R (2006) The epidemiology of visceral leishmaniasis in Bangladesh: prospects for improved control. Indian J Med Res 123: 275–288.
[18]  Elias M, Rahman AJ, Khan NI (1989) Visceral leishmaniasis and its control in Bangladesh. Bull World Health Organ 67: 43–49.
[19]  Sanyal RK, Banerjee DP, Ghosh TK, Ghose JN, Misra BS, et al. (1979) A longitudinal review of kala-azar in Bihar. J Com Dis 11: 149–169.
[20]  Sen Gupta PC (1975) Return of kala-azar. J Indian Med Assoc 65: 89–90.
[21]  Sen Gupta PC (1947) Observations on an outbreak of kala-azar in Calcutta. Indian Medical Gazette 82: 726–734.
[22]  Sivaprakasam P, Padmanabhan B, Sadanand AV (1988) Recent trends in the incidence and epidemiology of kala-azar in Madras city. J Commun Dis 20: 185–195.
[23]  Kaul SM, Jain DC (1995) Distribution of Phlebotomine sandflies (Diptera:Psychodidae) according to the physiographic divisions of India. J Commun Dis 27: 155–163.
[24]  Lewis D (1982) A taxonomic review of the genus Phlebotomus (Diptera: Psychodidae). . Bulletin of the British Museum (Natural History) (Entomology) 45: 121–209.
[25]  Singh RK, Pandey HP, Sundar S (2006) Visceral leishmaniasis (kala-azar): challenges ahead. Indian J Med Res 123: 331–344.
[26]  Barnett P, Singh SP, Bern C, Hightower AW, Sundar S (2005) Virgin soil: the spread of visceral leishmaniasis into Uttar Pradesh, India. Am J Trop Med Hyg 73: 720–725.
[27]  Bern C, Hightower AW, Chowdhury R, Ali M, Amann J, et al. (2005) Risk factors for kala-azar in Bangladesh. Emerg Infect Dis 11: 655–662. doi: 10.3201/eid1105.040718
[28]  Dhiman RC, Sen AB (1991) Epidemiology of kala-azar in rural Bihar (India) using village as a component unit of study. Indian J Med Res 93: 155–160.
[29]  Rahman K, Islam S, Rahman M, Kenah E, Galive C, et al. (2010) Rising incidence of post-kala-azar dermal leishmaniasis in a population-based study in Bangladesh. Clin Infect Dis 50: 73–76. doi: 10.1086/648727
[30]  Bern C, Joshi AB, Jha SN, Das ML, Hightower A, et al. (2000) Factors associated with visceral leishmaniasis in Nepal: bed-net use is strongly protective. Am J Trop Med Hyg 63: 184–188.
[31]  Ranjan A, Sur D, Singh VP, Siddique NA, Manna B, et al. (2005) Risk factors for Indian kala-azar. Am J Trop Med Hyg 73: 74–78.
[32]  Schenkel K, Rijal S, Koirala S, Koirala S, Vanlerberghe V, et al. (2006) Visceral leishmaniasis in southeastern Nepal: a cross-sectional survey on Leishmania donovani infection and its risk factors. Trop Med Int Health 11: 1792–1799. doi: 10.1111/j.1365-3156.2006.01735.x
[33]  Saha S, Ramachandran R, Hutin YJ, Gupte MD (2008) Visceral leishmaniasis is preventable in a highly endemic village in West Bengal, India. Trans R Soc Trop Med Hyg.
[34]  Rukunuzzaman M, Rahman M (2008) Epidemiological study of risk factors related to childhood visceral leishmaniasis. Mymensingh Med J 17: 46–50.
[35]  Boelaert M, Meheus F, Sanchez A, Singh SP, Vanlerberghe V, et al. (2009) The poorest of the poor: a poverty appraisal of households affected by visceral leishmaniasis in Bihar, India. Trop Med Int Health 14: 639–644. doi: 10.1111/j.1365-3156.2009.02279.x
[36]  Alvar J, Yactayo S, Bern C (2006) Leishmaniasis and poverty. Trends Parasitol 22: 552–557. doi: 10.1016/j.pt.2006.09.004
[37]  Kumar R, Kumar P, Chowdhary RK, Pai K, Mishra CP, et al. (1999) Kala-azar epidemic in Varanasi district, India. Bull World Health Organ 77: 371–374.
[38]  Karplus TM, Jeronimo SM, Chang H, Helms BK, Burns TL, et al. (2002) Association between the tumor necrosis factor locus and the clinical outcome of Leishmania chagasi infection. Infect Immun 70: 6919–6925. doi: 10.1128/IAI.70.12.6919-6925.2002
[39]  Blackwell JM, Fakiola M, Ibrahim ME, Jamieson SE, Jeronimo SB, et al. (2009) Genetics and visceral leishmaniasis: of mice and man. Parasite Immunol 31: 254–266. doi: 10.1111/j.1365-3024.2009.01102.x
[40]  Kennedy LJ, Barnes A, Happ GM, Quinnell RJ, Courtenay O, et al. (2002) Evidence for extensive DLA polymorphism in different dog populations. Tissue Antigens 60: 43–52. doi: 10.1034/j.1399-0039.2002.600106.x
[41]  Quinnell RJ, Kennedy LJ, Barnes A, Courtenay O, Dye C, et al. (2003) Susceptibility to visceral leishmaniasis in the domestic dog is associated with MHC class II polymorphism. Immunogenetics 55: 23–28. doi: 10.1007/s00251-003-0545-1
[42]  Cerf BJ, Jones TC, Badaro R, Sampaio D, Teixeira R, et al. (1987) Malnutrition as a risk factor for severe visceral leishmaniasis. J Infect Dis 156: 1030–1033. doi: 10.1093/infdis/156.6.1030
[43]  Anstead GM, Chandrasekar B, Zhao W, Yang J, Perez LE, et al. (2001) Malnutrition alters the innate immune response and increases early visceralization following Leishmania donovani infection. Infect Immun 69: 4709–4718. doi: 10.1128/IAI.69.8.4709-4718.2001
[44]  Napier LE, Das Gupta CR (1931) An epidemiological investigation of kala-azar in a rural area in Bengal. Indian J Med Res 19: 295–341.
[45]  Bucheton B, Kheir MM, El-Safi SH, Hammad A, Mergani A, et al. (2002) The interplay between environmental and host factors during an outbreak of visceral leishmaniasis in eastern Sudan. Microbes Infect 4: 1449–1457. doi: 10.1016/S1286-4579(02)00027-8
[46]  Kolaczinski JH, Reithinger R, Worku DT, Ocheng A, Kasimiro J, et al. (2008) Risk factors of visceral leishmaniasis in East Africa: a case-control study in Pokot territory of Kenya and Uganda. Int J Epidemiol 37: 344–352. doi: 10.1093/ije/dym275
[47]  Dhiman RC, Shetty PS, Dhanda V (1983) Breeding habitats of phlebotomine sandflies in Bihar, India. Indian J Med Res 77: 29–32.
[48]  Ghosh KN, Bhattacharya A (1991) Breeding places of Phlebotomus argentipes Annandale and Brunetti (Diptera: Psychodidae) in West Bengal, India. Parassitologia 33: Suppl267–272.
[49]  Kesari S, Palit A, Kishore K (1992) Study of breeding habitats of sandflies–preliminary approach. J Commun Dis 24: 62–63.
[50]  Kundu M, Basak B, Tandon N (1995) A simple technique for detection and isolation of Phlebotomous argentipes larvae from soil samples. J Commun Dis 27: 58–59.
[51]  Singh R, Lal S, Saxena VK (2008) Breeding ecology of visceral leishmaniasis vector sandfly in Bihar state of India. Acta Trop 107: 117–120. doi: 10.1016/j.actatropica.2008.04.025
[52]  Dinesh DS, Das P, Picado A, Davies C, Speybroeck N, et al. (2008) Long-lasting insecticidal nets fail at household level to reduce abundance of sandfly vector Phlebotomus argentipes in treated houses in Bihar (India). Trop Med Int Health 13: 953–958. doi: 10.1111/j.1365-3156.2008.02096.x
[53]  Quinnell RJ, Dye C, Shaw JJ (1992) Host preferences of the phlebotomine sandfly Lutzomyia longipalpis in Amazonian Brazil. Med Vet Entomol 6: 195–200. doi: 10.1111/j.1365-2915.1992.tb00606.x
[54]  Dye C, Davies CR, Lainson R (1991) Communication among phlebotomine sandflies: a field study of domesticated Lutzomyia longipalpis populations in Amazonian Brazil. Animal Behavior 42: 183–192. doi: 10.1016/s0003-3472(05)80549-4
[55]  Dinesh DS, Ranjan A, Palit A, Kishore K, Kar SK (2001) Seasonal and nocturnal landing/biting behaviour of Phlebotomus argentipes (Diptera: Psychodidae). Ann Trop Med Parasitol 95: 197–202. doi: 1080/00034980120041071
[56]  Mukhopadhyay AK, Chakravarty AK (1987) Bloodmeal preference of Phlebotomus argentipes & Ph. papatasi of north Bihar, India. Indian J Med Res 86: 475–480.
[57]  Basak B, Kundu M, Tandon N (1995) Observation on host preference of Phlebotomus argentipes in district South-24-Parganas, West Bengal, India. J Commun Dis 27: 122–123.
[58]  Ghosh KN, Bhattacharya A, Ghosh TN (1990) Blood meal analysis of Phlebotomus argentipes in eight districts of West Bengal. J Commun Dis 22: 67–71.
[59]  Palit A, Bhattacharya SK, Kundu SN (2005) Host preference of Phlebotomus argentipes and Phlebotomus papatasi in different biotopes of West Bengal, India. Int J Environ Health Res 15: 449–454. doi: 10.1080/09603120500392525
[60]  Lane RP, Pile MM, Amerasinghe FP (1990) Anthropophagy and aggregation behaviour of the sandfly Phlebotomus argentipes in Sri Lanka. Med Vet Entomol 4: 79–88. doi: 10.1111/j.1365-2915.1990.tb00263.x
[61]  Palit A, Kesari S, Ranjan A, Kishore K (1993) Mating aggregation of Phlebotomus argentipes at animal hosts in India. Indian Journal of Parasitology 17: 11–13.
[62]  Kelly DW, Mustafa Z, Dye C (1997) Differential application of lambda-cyhalothrin to control the sandfly Lutzomyia longipalpis. Med Vet Entomol 11: 13–24. doi: 10.1111/j.1365-2915.1997.tb00285.x
[63]  Kelly DW, Dye C (1997) Pheromones, kairomones and the aggregation dynamics of the sandfly Lutzomyia longipalpis. Animal Behaviour 53: 721–731. doi: 10.1006/anbe.1996.0309
[64]  South East Asian Regional Office of the World Health Organization (2009) Elimination of kala-azar. http://www.searo.who.int/EN/Section10/Se?ction2163_11674.htm 07/28/2009.
[65]  Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, et al. (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5: 873–882. doi: 10.1038/nrmicro1748
[66]  Sundar S, Jha TK, Thakur CP, Sinha PK, Bhattacharya SK (2007) Injectable paromomycin for Visceral leishmaniasis in India. N Engl J Med 356: 2571–2581. doi: 10.1056/NEJMoa066536
[67]  Sundar S, Rai M, Chakravarty J, Agarwal D, Agrawal N, et al. (2008) New treatment approach in Indian visceral leishmaniasis: single-dose liposomal amphotericin B followed by short-course oral miltefosine. Clin Infect Dis 47: 1000–1006. doi: 10.1086/591972
[68]  Thakur CP, Kumar K (1990) Efficacy of prolonged therapy with stibogluconate in post kala-azar dermal leishmaniasis. Indian J Med Res 91: 144–148.
[69]  Sharma MC, Gupta AK, Das VN, Verma N, Kumar N, et al. (2000) Leishmania donovani in blood smears of asymptomatic persons. Acta Trop 76: 195–196. doi: 10.1016/S0001-706X(00)00068-1
[70]  Costa CH, Gomes RB, Silva MR, Garcez LM, Ramos PK, et al. (2000) Competence of the human host as a reservoir for Leishmania chagasi. J Infect Dis 182: 997–1000. doi: 10.1086/315795
[71]  Molina R, Lohse JM, Pulido F, Laguna F, Lopez-Velez R, et al. (1999) Infection of sand flies by humans coinfected with Leishmania infantum and human immunodeficiency virus. Am J Trop Med Hyg 60: 51–53.
[72]  Christophers S, Shortt H, Barraud P (1924) The development of the parasite of Indian kala-azar in the sandfly Phlebotomus argentipes Annandale and Brunetti. Indian J Med Res 12: 605–607.
[73]  Mukhopadhyay AK, Mishra RN (1991) Development of Leishmania donovani in Phlebotomus argentipes & Ph. papatasi fed on kala-azar patients in Bihar. Indian J Med Res 93: 152–154.
[74]  Napier L, Smith R (1926) The development of Leishmania donovani in the gut of the sand fly Phlebotomus papatasi. Indian J Med Res 14: 713–716.
[75]  Shortt H, Barraud P, Craighead A (1926) Transmission experiments in India kala-azar with Phlebotomus argentipes. Indian J Med Res 14: 589–600.
[76]  Shortt HE, Smith ROA, Swaminath CS, Krishnan KV (1931) Transmission of Indian kala-azar by the bite of Phlebotomus argentipes. Indian J Med Res 18: 1373–1375.
[77]  Smith R, Hadler K, Ahmed I (1940) Further investigations on the transmission of kala-azar. Indian J Med Res 28: 585–591.
[78]  Courtenay O, Quinnell RJ, Garcez LM, Shaw JJ, Dye C (2002) Infectiousness in a cohort of brazilian dogs: why culling fails to control visceral leishmaniasis in areas of high transmission. J Infect Dis 186: 1314–1320. doi: 10.1086/344312
[79]  Travi BL, Tabares CJ, Cadena H, Ferro C, Osorio Y (2001) Canine visceral leishmaniasis in Colombia: relationship between clinical and parasitologic status and infectivity for sand flies. Am J Trop Med Hyg 64: 119–124.
[80]  Molina R, Canavate C, Cercenado E, Laguna F, Lopez-Velez R, et al. (1994) Indirect xenodiagnosis of visceral leishmaniasis in 10 HIV-infected patients using colonized Phlebotomus perniciosus. Aids 8: 277–279. doi: 10.1097/00002030-199402000-00024
[81]  Tortajada C, Perez-Cuevas B, Moreno A, Martinez E, Mallolas J, et al. (2002) Highly active antiretroviral therapy (HAART) modifies the incidence and outcome of visceral leishmaniasis in HIV-infected patients. J Acquir Immune Defic Syndr 30: 364–366.
[82]  Alexander B, Usma MC, Cadena H, Quesada BL, Solarte Y, et al. (1995) Evaluation of deltamethrin-impregnated bednets and curtains against phlebotomine sandflies in Valle del Cauca, Colombia. Med Vet Entomol 9: 279–283. doi: 10.1111/j.1365-2915.1995.tb00134.x
[83]  Alten B, Caglar S, Kaynas S, Simsek F (2003) Evaluation of protective efficacy of K-OTAB impregnated bednets for cutaneous leishmaniasis control in Southeast Anatolia-Turkey. J Vector Ecol 28: 53–64.
[84]  Courtenay O, Gillingwater K, Gomes PA, Garcez LM, Davies CR (2007) Deltamethrin-impregnated bednets reduce human landing rates of sandfly vector Lutzomyia longipalpis in Amazon households. Med Vet Entomol 21: 168–176. doi: 10.1111/j.1365-2915.2007.00678.x
[85]  Jalouk L, Al Ahmed M, Gradoni L, Maroli M (2007) Insecticide-treated bednets to prevent anthroponotic cutaneous leishmaniasis in Aleppo Governorate, Syria: results from two trials. Trans R Soc Trop Med Hyg 101: 360–367. doi: 10.1016/j.trstmh.2006.07.011
[86]  Ordonez Gonzalez J, Kroeger A, Avina AI, Pabon E (2002) Wash resistance of insecticide-treated materials. Trans R Soc Trop Med Hyg 96: 370–375. doi: 10.1016/S0035-9203(02)90363-9
[87]  Reyburn H, Ashford R, Mohsen M, Hewitt S, Rowland M (2000) A randomized controlled trial of insecticide-treated bednets and chaddars or top sheets, and residual spraying of interior rooms for the prevention of cutaneous leishmaniasis in Kabul, Afghanistan. Trans R Soc Trop Med Hyg 94: 361–366. doi: 10.1016/S0035-9203(00)90104-4
[88]  Yaghoobi-Ershadi MR, Moosa-Kazemi SH, Zahraei-Ramazani AR, Jalai-Zand AR, Akhavan AA, et al. (2006) Evaluation of deltamethrin-impregnated bed nets and curtains for control of zoonotic cutaneous leishmaniasis in a hyperendemic area of Iran. Bull Soc Pathol Exot 99: 43–48. doi: 10.3185/pathexo2818
[89]  Kumar V, Kesari SK, Sinha NK, Palit A, Ranjan A, et al. (1995) Field trial of an ecological approach for the control of Phlebotomus argentipes using mud & lime plaster. Indian J Med Res 101: 154–156.
[90]  Feliciangeli MD, Campbell-Lendrum D, Martinez C, Gonzalez D, Coleman P, et al. (2003) Chagas disease control in Venezuela: lessons for the Andean region and beyond. Trends Parasitol 19: 44–49. doi: 10.1016/S1471-4922(02)00013-2
[91]  World Health Organization (2008) TDR Research to support the elimination of visceral leishmaniasis - 2008 annual report. http://apps.who.int/tdr/publications/abo?ut-tdr/annual-reports/visceral-leishmani?asis-elimination-2008/pdf/BL10-annual-re?port-2008.pdf 07/28/2009.
[92]  ClinicalTrials.gov (2009) Efficacy, Acceptability and Cost-effectiveness of Long Lasting Insecticide Nets (LLIN) in the Prevention of Kala Azar (KALANET). http://clinicaltrials.gov/ct2/show/NCT00?318721 12/11/2009.
[93]  Ghosh K, Mukhopadhyay J, Desai MM, Senroy S, Bhattacharya A (1999) Population ecology of Phlebotomus argentipes (Diptera: Psychodidae) in West Bengal, India. J Med Entomol 36: 588–594.
[94]  Chakravarty AK, Sanyal RK, Suri JC (1979) Zoonotic reservoir in Indian kala-azar. J Com Dis 11: 219–220.
[95]  Donovan C (1909) Kala-azar in Madras, especially with regard to its connexion with the dog and the bug (Conorrhinus). Lancet 2: 1495–1496. doi: 10.1016/s0140-6736(01)11628-4
[96]  Srivastava L, Chakarvarty AK (1984) Investigation of possible zoonotic reservoirs of Indian kala-azar. Ann Trop Med Parasitol 78: 501–504.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133