Background Symptoms and signs of leptospirosis are non-specific. Several diagnostic tests for leptospirosis are available and in some instances are being used prior to treatment of leptospirosis-suspected patients. There is therefore a need to evaluate the cost-effectiveness of the different treatment strategies in order to avoid misuse of scarce resources and ensure best possible health outcomes for patients. Methods The study population was adult patients, presented with uncomplicated acute febrile illness, without an obvious focus of infection or malaria or typical dengue infection. We compared the cost and effectiveness of 5 management strategies: 1) no patients tested or given antibiotic treatment; 2) all patients given empirical doxycycline treatment; patients given doxycycline when a patient is tested positive for leptospirosis using: 3) lateral flow; 4) MCAT; 5) latex test. The framework used is a cost-benefit analysis, accounting for all direct medical costs in diagnosing and treating patients suspected of leptospirosis. Outcomes are measured in length of fever after treatment which is then converted to productivity losses to capture the full economic costs. Findings Empirical doxycycline treatment was the most efficient strategy, being both the least costly alternative and the one that resulted in the shortest duration of fever. The limited sensitivity of all three diagnostic tests implied that their use to guide treatment was not cost-effective. The most influential parameter driving these results was the cost of treating patients with complications for patients who did not receive adequate treatment as a result of incorrect diagnosis or a strategy of no-antibiotic-treatment. Conclusions Clinicians should continue treating suspected cases of leptospirosis on an empirical basis. This conclusion holds true as long as policy makers are not prioritizing the reduction of use of antibiotics, in which case the use of the latex test would be the most efficient strategy.
References
[1]
Tangkanakul W, Smits HL, Jatanasen S, Ashford D A (2005) Leptospirosis: an emerging health problem in Thailand. Southeast Asian J Trop Med Public Health 36: 281–8.
[2]
LaRocque RC, Breiman RF, Are MD, Morey RE, Janan FA, et al. (2005) Leptospirosis during dengue outbreak, Bangladesh. Emerg Infect Dis11: 766–9.
[3]
El Jalii IM, Bahaman AR (2004) A review of human leptospirosis in Malaysia. Trop Biomed 21: 113–9.
[4]
Ko AI, Galvao Reis M, Ribeiro Dourado CM (1999) Urban epidemic of severe leptospirosis in Brazil. Salvador Leptospirosis Study Group. Lancet 354: 820–5. doi: 10.1016/S0140-6736(99)80012-9
[5]
Johnson MA, Smith H, Joseph P (2004) Environmental exposure and leptospirosis, Peru. Emerg Infect Dis 10: 1016–22. doi: 10.3201/eid1006.030660
[6]
Faine SB, Adler B, Bolin C, Perolat P (1999) Leptospira and leptospirosis. 2nded. Melbourne: MediSci.
[7]
Katz AR, Ansdell VE, Effler OV, Middleton CR, Sasaki DM (2001) Assessment of the clinical presentations and treatment of 353 cases of laboratory- confirmed leptospirosis in Hawaii, 1974–1988. CID 33: 1834–41. doi: 10.1086/324084
[8]
Murdoch DR, Woods CW, Zimmerman MD (2004) The etiology of febrile illness in adults presenting to Patah Hospital in Kathmandu, Nepal. Am J Trop Med Hyg 70: 670–5.
[9]
Suttinont C, Losuwanaluk K, Niwatayakul K, Hoontrakul S, Intaranongpai W, et al. (2006) Causes of acute, undifferentiated, febrile illness in rural Thailand: results of a prospective observational study. Ann Trop Med Parasitol 100: 363–70. doi: 10.1197/136485906X112158
[10]
Kemapunmanus M, Sretrirutchai S, Khuntikij P, Pradutkanchana S, Pradutkanchana J (2004) A prospective evaluation of four immunodiagnostic assays for human leptospirosis. Southeast Asian J Trop Med Public Health 35: 863–7.
[11]
Phimda K, Hoontrakul S, Suttinont C, Charoenwat S, Losuwanaluk K, et al. (2007) Doxycycline versus Azithromycin for the Treatment of Leptospirosis and Scrub typhus. Antimicrob Agents Chemother 51: 3259–63. doi: 10.1128/AAC.00508-07
[12]
Beck JR, Pauker SG (1983) The Markov model of medical prognosis. Med Decis Making 3: 419–58. doi: 10.1177/0272989X8300300403
[13]
Sehgal SC, Vijayachari P, Sugunan AP, Umapathi T (2003) Field application of Lepto lateral flow for rapid diagnosis of leptospirosis. J Med Microb 52: 897–901. doi: 10.1099/jmm.0.05064-0
[14]
Arimitsu Y, Kmety E, Ananyina Y, Baranton G, Ferguson IR, et al. (1994) Evaluation of the one-point microcapsule agglutination test for diagnosis of leptospirosis. Bull WHO 72: 395–9.
[15]
Suputtamongkol Y, Sarawish S, Silpasakorn S, Potha U, Silpapojakul , et al. (1998) Microcapsule agglutination test for the diagnosis of leptospirosis in Thailand. Ann Trop Med Parasitol 92: 797–801. doi: 10.1080/00034989859041
[16]
Naigowit P, Luepaktra O, Yasang S, Biklang M, Warachit P (2001) Development of a screening method for Serodiagnosis of leptospirosis. Intern Med Thai 17: 182–7.
[17]
Marotto PC, Nascimento CM, Eluf-Neto J, Marotto MS, Andrade L, et al. (1999) Acute lung injury in leptospirosis: clinical and laboratory features, outcome, and factors associated with mortality. Clin infect Dis 29: 1561–3. doi: 10.1086/313501
[18]
Fairburn AC, Semple SJG (1956) Chloramphenicol and penicillin in the treatment of leptospirosis among British troops in Malaya. Lancet 1: 13–6. doi: 10.1016/S0140-6736(56)91853-0
[19]
Bermon SJ, Tsai C, Holmes K, Gunning JJ, Watten RH (1973) Sporadic anicteric leptospirosis in South Vietnam. A study in 150 patients. Ann Intern Med 79: 167–73. doi: 10.7326/0003-4819-79-2-167
[20]
Russell RW (1958) Treatment of leptospirosis with oxytetracycline. Lancet 2: 1143–5. doi: 10.1016/S0140-6736(58)92405-X
[21]
McClain JB, Ballou WR, Harrison SM, Steinweg DL (1984) Doxycycline therapy for leptospirosis. Ann Int Med 100: 696–8. doi: 10.7326/0003-4819-100-5-696
[22]
McBride JA, Athanazio DA, Reis MG, Ko AI (2005) Leptospirosis. Curr Opin Infect Dis 18: 376–86. doi: 10.1097/01.qco.0000178824.05715.2c
[23]
Parra Ruiz J, Pena Monje A, Tomas Jimenez C, Parejo Sanchez MI, et al. (2008) Clinical spectrum of fever of intermediate duration in the south of Spain. Eu J Clin Microb Infect Dis 27: 993–5. doi: 10.1007/s10096-008-0530-6