全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Immunity to Lutzomyia intermedia Saliva Modulates the Inflammatory Environment Induced by Leishmania braziliensis

DOI: 10.1371/journal.pntd.0000712

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background During blood feeding, sand flies inject Leishmania parasites in the presence of saliva. The types and functions of cells present at the first host-parasite contact are critical to the outcome on infection and sand fly saliva has been shown to play an important role in this setting. Herein, we investigated the in vivo chemotactic effects of Lutzomyia intermedia saliva, the vector of Leishmania braziliensis, combined or not with the parasite. Methods and Findings We tested the initial response induced by Lutzomyia intermedia salivary gland sonicate (SGS) in BALB/c mice employing the air pouch model of inflammation. L. intermedia SGS induced a rapid influx of macrophages and neutrophils. In mice that were pre-sensitized with L. intermedia saliva, injection of SGS was associated with increased neutrophil recruitment and a significant up-regulation of CXCL1, CCL2, CCL4 and TNF-α expression. Surprisingly, in mice that were pre-exposed to SGS, a combination of SGS and L. braziliensis induced a significant migration of neutrophils and an important modulation in cytokine and chemokine expression as shown by decreased CXCL10 expression and increased IL-10 expression. Conclusion These results confirm that sand fly saliva modulates the initial host response. More importantly, pre-exposure to L. intermedia saliva significantly modifies the host's response to L. braziliensis, in terms of cellular recruitment and expression of cytokines and chemokines. This particular immune modulation may, in turn, favor parasite multiplication.

References

[1]  WHO web site (2010) Available: http://www.who.int/leishmaniasis/disease?_epidemiology/en/index.html.
[2]  Lainson R, Shaw JJ (2005) New World Leishmaniasis;. In: Cox FEG, Wakelin D, Gillespie SH, Despomminer DD, editors. London: ASM Press. pp. 313–349.
[3]  Rangel EF, Lainson R (2003) Ecologia das Leishmanioses: transmissores de leishmaniose tegumentar americana. In: Rangel EF, R. L, editors. Rio de Janeiro: FIOCRUZ. pp. 291–310.
[4]  Titus RG, Ribeiro JM (1988) Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science 239: 1306–1308. doi: 10.1126/science.3344436
[5]  Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, et al. (1998) Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 188: 1941–1953. doi: 10.1084/jem.188.10.1941
[6]  Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, et al. (2000) A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 165: 969–977.
[7]  Belkaid Y, Valenzuela JG, Kamhawi S, Rowton E, Sacks DL, et al. (2000) Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: An adaptive response induced by the fly? Proc Natl Acad Sci U S A 97: 6704–6709. doi: 10.1073/pnas.97.12.6704
[8]  Thiakaki M, Rohousova I, Volfova V, Volf P, Chang KP, et al. (2005) Sand fly specificity of saliva-mediated protective immunity in Leishmania amazonensis-BALB/c mouse model. Microbes Infect 7: 760–766. doi: 10.1016/j.micinf.2005.01.013
[9]  Gomes R, Teixeira C, Teixeira MJ, Oliveira F, Menezes MJ, et al. (2008) Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci U S A 105: 7845–7850. doi: 10.1073/pnas.0712153105
[10]  de Moura TR, Oliveira F, Novais FO, Miranda JC, Clarencio J, et al. (2007) Enhanced Leishmania braziliensis Infection Following Pre-Exposure to Sandfly Saliva. PLoS Negl Trop Dis 1: e84. doi: 10.1371/journal.pntd.0000084
[11]  Rohousova I, Ozensoy S, Ozbel Y, Volf P (2005) Detection of species-specific antibody response of humans and mice bitten by sand flies. Parasitology 130: 493–499. doi: 10.1017/S003118200400681X
[12]  Silva F, Gomes R, Prates D, Miranda JC, Andrade B, et al. (2005) Inflammatory cell infiltration and high antibody production in BALB/c mice caused by natural exposure to Lutzomyia longipalpis bites. Am J Trop Med Hyg 72: 94–98.
[13]  Costa DJ, Favali C, Clarencio J, Afonso L, Conceicao V, et al. (2004) Lutzomyia longipalpis salivary gland homogenate impairs cytokine production and costimulatory molecule expression on human monocytes and dendritic cells. Infect Immun 72: 1298–1305. doi: 10.1128/IAI.72.3.1298-1305.2004
[14]  Rogers KA, Titus RG (2003) Immunomodulatory effects of Maxadilan and Phlebotomus papatasi sand fly salivary gland lysates on human primary in vitro immune responses. Parasite Immunol 25: 127–134. doi: 10.1046/j.1365-3024.2003.00623.x
[15]  Anjili CO, Mbati PA, Mwangi RW, Githure JI, Olobo JO, et al. (1995) The chemotactic effect of Phlebotomus duboscqi (Diptera: Psychodidae) salivary gland lysates to murine monocytes. Acta Trop 60: 97–100. doi: 10.1016/0001-706X(95)00112-R
[16]  Titus RG (1998) Salivary gland lysate from the sand fly Lutzomyia longipalpis suppresses the immune response of mice to sheep red blood cells in vivo and concanavalin A in vitro. Exp Parasitol 89: 133–136. doi: 10.1006/expr.1998.4272
[17]  Oliveira F, Kamhawi S, Seitz AE, Pham VM, Guigal PM, et al. (2006) From transcriptome to immunome: identification of DTH inducing proteins from a Phlebotomus ariasi salivary gland cDNA library. Vaccine 24: 374–390. doi: 10.1016/j.vaccine.2005.07.085
[18]  Menezes MJ, Costa DJ, Clarencio J, Miranda JC, Barral A, et al. (2008) Immunomodulation of human monocytes following exposure to Lutzomyia intermedia saliva. BMC Immunol 9: 12. doi: 10.1186/1471-2172-9-12
[19]  Yoshino S, Cromartie WJ, Schwab JH (1985) Inflammation induced by bacterial cell wall fragments in the rat air pouch. Comparison of rat strains and measurement of arachidonic acid metabolites. Am J Pathol 121: 327–336.
[20]  Teixeira CR, Teixeira MJ, Gomes RB, Santos CS, Andrade BB, et al. (2005) Saliva from Lutzomyia longipalpis induces CC chemokine ligand 2/monocyte chemoattractant protein-1 expression and macrophage recruitment. J Immunol 175: 8346–8353.
[21]  de Moura TR, Novais FO, Oliveira F, Clarencio J, Noronha A, et al. (2005) Toward a novel experimental model of infection to study American cutaneous leishmaniasis caused by Leishmania braziliensis. Infect Immun 73: 5827–5834. doi: 10.1128/IAI.73.9.5827-5834.2005
[22]  Matte C, Olivier M (2002) Leishmania-induced cellular recruitment during the early inflammatory response: modulation of proinflammatory mediators. J Infect Dis 185: 673–681. doi: 10.1086/339260
[23]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[24]  Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2: 845–858. doi: 10.1038/nri933
[25]  Andrade BB, de Oliveira CI, Brodskyn CI, Barral A, Barral-Netto M (2007) Role of sand fly saliva in human and experimental leishmaniasis: current insights. Scand J Immunol 66: 122–127. doi: 10.1111/j.1365-3083.2007.01964.x
[26]  Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, et al. (2001) Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med 194: 331–342. doi: 10.1084/jem.194.3.331
[27]  Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, et al. (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321: 970–974. doi: 10.1126/science.1159194
[28]  Aga E, Katschinski DM, van Zandbergen G, Laufs H, Hansen B, et al. (2002) Inhibition of the spontaneous apoptosis of neutrophil granulocytes by the intracellular parasite Leishmania major. J Immunol 169: 898–905.
[29]  van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, et al. (2004) Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 173: 6521–6525.
[30]  Warburg A, Saraiva E, Lanzaro GC, Titus RG, Neva F (1994) Saliva of Lutzomyia longipalpis sibling species differs in its composition and capacity to enhance leishmaniasis. Philos Trans R Soc Lond B Biol Sci 345: 223–230. doi: 10.1098/rstb.1994.0097
[31]  Cerna P, Mikes L, Volf P (2002) Salivary gland hyaluronidase in various species of phlebotomine sand flies (Diptera: psychodidae). Insect Biochem Mol Biol 32: 1691–1697. doi: 10.1016/S0965-1748(02)00109-1
[32]  Volfova V, Hostomska J, Cerny M, Votypka J, Volf P (2008) Hyaluronidase of bloodsucking insects and its enhancing effect on leishmania infection in mice. PLoS Negl Trop Dis 2: e294. doi: 10.1371/journal.pntd.0000294
[33]  Kobayashi Y (2008) The role of chemokines in neutrophil biology. Front Biosci 13: 2400–2407. doi: 10.2741/2853
[34]  Bozic CR, Kolakowski LF Jr, Gerard NP, Garcia-Rodriguez C, von Uexkull-Guldenband C, et al. (1995) Expression and biologic characterization of the murine chemokine KC. J Immunol 154: 6048–6057.
[35]  Reichel CA, Rehberg M, Lerchenberger M, Berberich N, Bihari P, et al. (2009) Ccl2 and Ccl3 Mediate Neutrophil Recruitment via Induction of Protein Synthesis and Generation of Lipid Mediators. Arterioscler Thromb Vasc Biol. doi: 10.1161/atvbaha.109.193268
[36]  Schrum S, Probst P, Fleischer B, Zipfel PF (1996) Synthesis of the CC-chemokines MIP-1alpha, MIP-1beta, and RANTES is associated with a type 1 immune response. J Immunol 157: 3598–3604.
[37]  Klein A, Cunha FQ, Ferreira SH (1995) The role of lymphocytes in the neutrophil migration induced by ovalbumin in immunized rats. Immunology 84: 577–584.
[38]  Canetti C, Silva JS, Ferreira SH, Cunha FQ (2001) Tumour necrosis factor-alpha and leukotriene B(4) mediate the neutrophil migration in immune inflammation. Br J Pharmacol 134: 1619–1628. doi: 10.1038/sj.bjp.0704403
[39]  Ramos CD, Canetti C, Souto JT, Silva JS, Hogaboam CM, et al. (2005) MIP-1alpha[CCL3] acting on the CCR1 receptor mediates neutrophil migration in immune inflammation via sequential release of TNF-alpha and LTB4. J Leukoc Biol 78: 167–177. doi: 10.1189/jlb.0404237
[40]  Rogers M, Kropf P, Choi BS, Dillon R, Podinovskaia M, et al. (2009) Proteophosophoglycans regurgitated by Leishmania-infected sand flies target the L-arginine metabolism of host macrophages to promote parasite survival. PLoS Pathog 5: e1000555. doi: 10.1371/journal.ppat.1000555
[41]  Samuelson J, Lerner E, Tesh R, Titus R (1991) A mouse model of Leishmania braziliensis braziliensis infection produced by coinjection with sand fly saliva. J Exp Med 173: 49–54. doi: 10.1084/jem.173.1.49
[42]  Lima HC, Titus RG (1996) Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice. Infect Immun 64: 5442–5445.
[43]  Theodos CM, Ribeiro JM, Titus RG (1991) Analysis of enhancing effect of sand fly saliva on Leishmania infection in mice. Infect Immun 59: 1592–1598.
[44]  Rogers ME, Ilg T, Nikolaev AV, Ferguson MA, Bates PA (2004) Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature 430: 463–467. doi: 10.1038/nature02675
[45]  Monteiro MC, Lima HC, Souza AA, Titus RG, Romao PR, et al. (2007) Effect of Lutzomyia longipalpis salivary gland extracts on leukocyte migration induced by Leishmania major. Am J Trop Med Hyg 76: 88–94.
[46]  Teixeira MJ, Fernandes JD, Teixeira CR, Andrade BB, Pompeu ML, et al. (2005) Distinct Leishmania braziliensis Isolates Induce Different Paces of Chemokine Expression Patterns. Infect Immun 73: 1191–1195. doi: 10.1128/IAI.73.2.1191-1195.2005
[47]  Vargas-Inchaustegui DA, Hogg AE, Tulliano G, Llanos-Cuentas A, Arevalo J, et al. (2009) CXCL10 production by human monocytes in response to Leishmania braziliensis infection. Infect Immun. doi: 10.1128/iai.00959-09
[48]  Ribeiro JM (1995) Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis 4: 143–152.
[49]  Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D (2000) Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290: 1351–1354. doi: 10.1126/science.290.5495.1351
[50]  Novais FO, Santiago RC, Bafica A, Khouri R, Afonso L, et al. (2009) Neutrophils and Macrophages Cooperate in Host Resistance against Leishmania braziliensis Infection. J Immunol. doi: 10.4049/jimmunol.0803720
[51]  Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, et al. (2002) IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 168: 3195–3204.
[52]  Kane MM, Mosser DM (2001) The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol 166: 1141–1147.
[53]  Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, et al. (2001) The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194: 1497–1506. doi: 10.1084/jem.194.10.1497
[54]  Muller K, van Zandbergen G, Hansen B, Laufs H, Jahnke N, et al. (2001) Chemokines, natural killer cells and granulocytes in the early course of Leishmania major infection in mice. Med Microbiol Immunol 190: 73–76.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133